https://github.com/meddjilani/FashionRecommender
We introduce a trend-aware and visually-grounded fashion recommendation system that integrates deep visual representations, garment-aware segmentation, semantic category similarity and user behavior simulation. Our pipeline extracts focused visual embeddings by masking non-garment regions via semantic segmentation followed by feature extraction using pretrained CNN backbones (ResNet-50, DenseNet-121, VGG16). To simulate realistic shopping behavior, we generate synthetic purchase histories influenced by user-specific trendiness and item popularity. Recommendations are computed using a weighted scoring function that fuses visual similarity, semantic coherence and popularity alignment. Experiments on the DeepFashion dataset demonstrate consistent gender alignment and improved category relevance, with ResNet-50 achieving 64.95% category similarity and lowest popularity MAE. An ablation study confirms the complementary roles of visual and popularity cues. Our method provides a scalable framework for personalized fashion recommendations that balances individual style with emerging trends. Our implementation is available at