Abstract:We introduce a trend-aware and visually-grounded fashion recommendation system that integrates deep visual representations, garment-aware segmentation, semantic category similarity and user behavior simulation. Our pipeline extracts focused visual embeddings by masking non-garment regions via semantic segmentation followed by feature extraction using pretrained CNN backbones (ResNet-50, DenseNet-121, VGG16). To simulate realistic shopping behavior, we generate synthetic purchase histories influenced by user-specific trendiness and item popularity. Recommendations are computed using a weighted scoring function that fuses visual similarity, semantic coherence and popularity alignment. Experiments on the DeepFashion dataset demonstrate consistent gender alignment and improved category relevance, with ResNet-50 achieving 64.95% category similarity and lowest popularity MAE. An ablation study confirms the complementary roles of visual and popularity cues. Our method provides a scalable framework for personalized fashion recommendations that balances individual style with emerging trends. Our implementation is available at https://github.com/meddjilani/FashionRecommender
Abstract:Although adversarial robustness has been extensively studied in white-box settings, recent advances in black-box attacks (including transfer- and query-based approaches) are primarily benchmarked against weak defenses, leaving a significant gap in the evaluation of their effectiveness against more recent and moderate robust models (e.g., those featured in the Robustbench leaderboard). In this paper, we question this lack of attention from black-box attacks to robust models. We establish a framework to evaluate the effectiveness of recent black-box attacks against both top-performing and standard defense mechanisms, on the ImageNet dataset. Our empirical evaluation reveals the following key findings: (1) the most advanced black-box attacks struggle to succeed even against simple adversarially trained models; (2) robust models that are optimized to withstand strong white-box attacks, such as AutoAttack, also exhibits enhanced resilience against black-box attacks; and (3) robustness alignment between the surrogate models and the target model plays a key factor in the success rate of transfer-based attacks