Topic:Image To Image Translation
What is Image To Image Translation? Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Papers and Code
May 30, 2025
Abstract:Medical imaging is critical for diagnostics, but clinical adoption of advanced AI-driven imaging faces challenges due to patient variability, image artifacts, and limited model generalization. While deep learning has transformed image analysis, 3D medical imaging still suffers from data scarcity and inconsistencies due to acquisition protocols, scanner differences, and patient motion. Traditional augmentation uses a single pipeline for all transformations, disregarding the unique traits of each augmentation and struggling with large data volumes. To address these challenges, we propose a Multi-encoder Augmentation-Aware Learning (MEAL) framework that leverages four distinct augmentation variants processed through dedicated encoders. Three fusion strategies such as concatenation (CC), fusion layer (FL), and adaptive controller block (BD) are integrated to build multi-encoder models that combine augmentation-specific features before decoding. MEAL-BD uniquely preserves augmentation-aware representations, enabling robust, protocol-invariant feature learning. As demonstrated in a Computed Tomography (CT)-to-T1-weighted Magnetic Resonance Imaging (MRI) translation study, MEAL-BD consistently achieved the best performance on both unseen- and predefined-test data. On both geometric transformations (like rotations and flips) and non-augmented inputs, MEAL-BD outperformed other competing methods, achieving higher mean peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) scores. These results establish MEAL as a reliable framework for preserving structural fidelity and generalizing across clinically relevant variability. By reframing augmentation as a source of diverse, generalizable features, MEAL supports robust, protocol-invariant learning, advancing clinically reliable medical imaging solutions.
* 36 pages, 9 figures, 2 tables
Via

Jun 05, 2025
Abstract:Large aperture ground based solar telescopes allow the solar atmosphere to be resolved in unprecedented detail. However, observations are limited by Earths turbulent atmosphere, requiring post image corrections. Current reconstruction methods using short exposure bursts face challenges with strong turbulence and high computational costs. We introduce a deep learning approach that reconstructs 100 short exposure images into one high quality image in real time. Using unpaired image to image translation, our model is trained on degraded bursts with speckle reconstructions as references, improving robustness and generalization. Our method shows an improved robustness in terms of perceptual quality, especially when speckle reconstructions show artifacts. An evaluation with a varying number of images per burst demonstrates that our method makes efficient use of the combined image information and achieves the best reconstructions when provided with the full image burst.
* A&A, Volume 693, January 2025
Via

Jun 13, 2025
Abstract:Vision-Language Translation (VLT) is a challenging task that requires accurately recognizing multilingual text embedded in images and translating it into the target language with the support of visual context. While recent Large Vision-Language Models (LVLMs) have demonstrated strong multilingual and visual understanding capabilities, there is a lack of systematic evaluation and understanding of their performance on VLT. In this work, we present a comprehensive study of VLT from three key perspectives: data quality, model architecture, and evaluation metrics. (1) We identify critical limitations in existing datasets, particularly in semantic and cultural fidelity, and introduce AibTrans -- a multilingual, parallel, human-verified dataset with OCR-corrected annotations. (2) We benchmark 11 commercial LVLMs/LLMs and 6 state-of-the-art open-source models across end-to-end and cascaded architectures, revealing their OCR dependency and contrasting generation versus reasoning behaviors. (3) We propose Density-Aware Evaluation to address metric reliability issues under varying contextual complexity, introducing the DA Score as a more robust measure of translation quality. Building upon these findings, we establish a new evaluation benchmark for VLT. Notably, we observe that fine-tuning LVLMs on high-resource language pairs degrades cross-lingual performance, and we propose a balanced multilingual fine-tuning strategy that effectively adapts LVLMs to VLT without sacrificing their generalization ability.
Via

May 28, 2025
Abstract:The substantial modality-induced variations in radiometric, texture, and structural characteristics pose significant challenges for the accurate registration of multimodal images. While supervised deep learning methods have demonstrated strong performance, they often rely on large-scale annotated datasets, limiting their practical application. Traditional unsupervised methods usually optimize registration by minimizing differences in feature representations, yet often fail to robustly capture geometric discrepancies, particularly under substantial spatial and radiometric variations, thus hindering convergence stability. To address these challenges, we propose a Collaborative Learning framework for Unsupervised Multimodal Image Registration, named CoLReg, which reformulates unsupervised registration learning into a collaborative training paradigm comprising three components: (1) a cross-modal image translation network, MIMGCD, which employs a learnable Maximum Index Map (MIM) guided conditional diffusion model to synthesize modality-consistent image pairs; (2) a self-supervised intermediate registration network which learns to estimate geometric transformations using accurate displacement labels derived from MIMGCD outputs; (3) a distilled cross-modal registration network trained with pseudo-label predicted by the intermediate network. The three networks are jointly optimized through an alternating training strategy wherein each network enhances the performance of the others. This mutual collaboration progressively reduces modality discrepancies, enhances the quality of pseudo-labels, and improves registration accuracy. Extensive experimental results on multiple datasets demonstrate that our ColReg achieves competitive or superior performance compared to state-of-the-art unsupervised approaches and even surpasses several supervised baselines.
Via

Jun 07, 2025
Abstract:To translate synthetic aperture radar (SAR) image into interpretable forms for human understanding is the ultimate goal of SAR advanced information retrieval. Existing methods mainly focus on 3D surface reconstruction or local geometric feature extraction of targets, neglecting the role of structural modeling in capturing semantic information. This paper proposes a novel task: SAR target structure recovery, which aims to infer the components of a target and the structural relationships between its components, specifically symmetry and adjacency, from a single-view SAR image. Through learning the structural consistency and geometric diversity across the same type of targets as observed in different SAR images, it aims to derive the semantic representation of target directly from its 2D SAR image. To solve this challenging task, a two-step algorithmic framework based on structural descriptors is developed. Specifically, in the training phase, it first detects 2D keypoints from real SAR images, and then learns the mapping from these keypoints to 3D hierarchical structures using simulated data. During the testing phase, these two steps are integrated to infer the 3D structure from real SAR images. Experimental results validated the effectiveness of each step and demonstrated, for the first time, that 3D semantic structural representation of aircraft targets can be directly derived from a single-view SAR image.
* 13 pages, 12 figures
Via

Jul 02, 2025
Abstract:In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
* 26 pages, 6 figures, 5 tables. To be submitted to AAS Journals.
Comments welcome
Via

Jun 11, 2025
Abstract:We introduce MetricHMR (Metric Human Mesh Recovery), an approach for metric human mesh recovery with accurate global translation from monocular images. In contrast to existing HMR methods that suffer from severe scale and depth ambiguity, MetricHMR is able to produce geometrically reasonable body shape and global translation in the reconstruction results. To this end, we first systematically analyze previous HMR methods on camera models to emphasize the critical role of the standard perspective projection model in enabling metric-scale HMR. We then validate the acceptable ambiguity range of metric HMR under the standard perspective projection model. Finally, we contribute a novel approach that introduces a ray map based on the standard perspective projection to jointly encode bounding-box information, camera parameters, and geometric cues for End2End metric HMR without any additional metric-regularization modules. Extensive experiments demonstrate that our method achieves state-of-the-art performance, even compared with sequential HMR methods, in metric pose, shape, and global translation estimation across both indoor and in-the-wild scenarios.
Via

May 21, 2025
Abstract:In-Image Machine Translation (IIMT) aims to translate texts within images from one language to another. Previous research on IIMT was primarily conducted on simplified scenarios such as images of one-line text with black font in white backgrounds, which is far from reality and impractical for applications in the real world. To make IIMT research practically valuable, it is essential to consider a complex scenario where the text backgrounds are derived from real-world images. To facilitate research of complex scenario IIMT, we design an IIMT dataset that includes subtitle text with real-world background. However previous IIMT models perform inadequately in complex scenarios. To address the issue, we propose the DebackX model, which separates the background and text-image from the source image, performs translation on text-image directly, and fuses the translated text-image with the background, to generate the target image. Experimental results show that our model achieves improvements in both translation quality and visual effect.
* Accepted to ACL 2025 Findings. Code available at
https://github.com/BITHLP/DebackX
Via

Jun 09, 2025
Abstract:Optical Coherence Tomography (OCT) provides high-resolution, 3D, and non-invasive visualization of retinal layers in vivo, serving as a critical tool for lesion localization and disease diagnosis. However, its widespread adoption is limited by equipment costs and the need for specialized operators. In comparison, 2D color fundus photography offers faster acquisition and greater accessibility with less dependence on expensive devices. Although generative artificial intelligence has demonstrated promising results in medical image synthesis, translating 2D fundus images into 3D OCT images presents unique challenges due to inherent differences in data dimensionality and biological information between modalities. To advance generative models in the fundus-to-3D-OCT setting, the Asia Pacific Tele-Ophthalmology Society (APTOS-2024) organized a challenge titled Artificial Intelligence-based OCT Generation from Fundus Images. This paper details the challenge framework (referred to as APTOS-2024 Challenge), including: the benchmark dataset, evaluation methodology featuring two fidelity metrics-image-based distance (pixel-level OCT B-scan similarity) and video-based distance (semantic-level volumetric consistency), and analysis of top-performing solutions. The challenge attracted 342 participating teams, with 42 preliminary submissions and 9 finalists. Leading methodologies incorporated innovations in hybrid data preprocessing or augmentation (cross-modality collaborative paradigms), pre-training on external ophthalmic imaging datasets, integration of vision foundation models, and model architecture improvement. The APTOS-2024 Challenge is the first benchmark demonstrating the feasibility of fundus-to-3D-OCT synthesis as a potential solution for improving ophthalmic care accessibility in under-resourced healthcare settings, while helping to expedite medical research and clinical applications.
Via

Jun 04, 2025
Abstract:Purpose: Visualization of subcortical gray matter is essential in neuroscience and clinical practice, particularly for disease understanding and surgical planning.While multi-inversion time (multi-TI) T$_1$-weighted (T$_1$-w) magnetic resonance (MR) imaging improves visualization, it is rarely acquired in clinical settings. Approach: We present SyMTIC (Synthetic Multi-TI Contrasts), a deep learning method that generates synthetic multi-TI images using routinely acquired T$_1$-w, T$_2$-weighted (T$_2$-w), and FLAIR images. Our approach combines image translation via deep neural networks with imaging physics to estimate longitudinal relaxation time (T$_1$) and proton density (PD) maps. These maps are then used to compute multi-TI images with arbitrary inversion times. Results: SyMTIC was trained using paired MPRAGE and FGATIR images along with T$_2$-w and FLAIR images. It accurately synthesized multi-TI images from standard clinical inputs, achieving image quality comparable to that from explicitly acquired multi-TI data.The synthetic images, especially for TI values between 400-800 ms, enhanced visualization of subcortical structures and improved segmentation of thalamic nuclei. Conclusion: SyMTIC enables robust generation of high-quality multi-TI images from routine MR contrasts. It generalizes well to varied clinical datasets, including those with missing FLAIR images or unknown parameters, offering a practical solution for improving brain MR image visualization and analysis.
* Under review at the Journal of Medical Imaging
Via
