Abstract:In-Image Machine Translation (IIMT) aims to translate texts within images from one language to another. Previous research on IIMT was primarily conducted on simplified scenarios such as images of one-line text with black font in white backgrounds, which is far from reality and impractical for applications in the real world. To make IIMT research practically valuable, it is essential to consider a complex scenario where the text backgrounds are derived from real-world images. To facilitate research of complex scenario IIMT, we design an IIMT dataset that includes subtitle text with real-world background. However previous IIMT models perform inadequately in complex scenarios. To address the issue, we propose the DebackX model, which separates the background and text-image from the source image, performs translation on text-image directly, and fuses the translated text-image with the background, to generate the target image. Experimental results show that our model achieves improvements in both translation quality and visual effect.
Abstract:Simultaneous machine translation (SiMT) is a challenging task that requires starting translation before the full source sentence is available. Prefix-to-prefix framework is often applied to SiMT, which learns to predict target tokens using only a partial source prefix. However, due to the word order difference between languages, misaligned prefix pairs would make SiMT models suffer from serious hallucination problems, i.e. target outputs that are unfaithful to source inputs. Such problems can not only produce target tokens that are not supported by the source prefix, but also hinder generating the correct translation by receiving more source words. In this work, we propose a Confidence-Based Simultaneous Machine Translation (CBSiMT) framework, which uses model confidence to perceive hallucination tokens and mitigates their negative impact with weighted prefix-to-prefix training. Specifically, token-level and sentence-level weights are calculated based on model confidence and acted on the loss function. We explicitly quantify the faithfulness of the generated target tokens using the token-level weight, and employ the sentence-level weight to alleviate the disturbance of sentence pairs with serious word order differences on the model. Experimental results on MuST-C English-to-Chinese and WMT15 German-to-English SiMT tasks demonstrate that our method can consistently improve translation quality at most latency regimes, with up to 2 BLEU scores improvement at low latency.