Abstract:The substantial modality-induced variations in radiometric, texture, and structural characteristics pose significant challenges for the accurate registration of multimodal images. While supervised deep learning methods have demonstrated strong performance, they often rely on large-scale annotated datasets, limiting their practical application. Traditional unsupervised methods usually optimize registration by minimizing differences in feature representations, yet often fail to robustly capture geometric discrepancies, particularly under substantial spatial and radiometric variations, thus hindering convergence stability. To address these challenges, we propose a Collaborative Learning framework for Unsupervised Multimodal Image Registration, named CoLReg, which reformulates unsupervised registration learning into a collaborative training paradigm comprising three components: (1) a cross-modal image translation network, MIMGCD, which employs a learnable Maximum Index Map (MIM) guided conditional diffusion model to synthesize modality-consistent image pairs; (2) a self-supervised intermediate registration network which learns to estimate geometric transformations using accurate displacement labels derived from MIMGCD outputs; (3) a distilled cross-modal registration network trained with pseudo-label predicted by the intermediate network. The three networks are jointly optimized through an alternating training strategy wherein each network enhances the performance of the others. This mutual collaboration progressively reduces modality discrepancies, enhances the quality of pseudo-labels, and improves registration accuracy. Extensive experimental results on multiple datasets demonstrate that our ColReg achieves competitive or superior performance compared to state-of-the-art unsupervised approaches and even surpasses several supervised baselines.
Abstract:Combinatorial Optimization (CO) encompasses a wide range of problems that arise in many real-world scenarios. While significant progress has been made in developing learning-based methods for specialized CO problems, a unified model with a single architecture and parameter set for diverse CO problems remains elusive. Such a model would offer substantial advantages in terms of efficiency and convenience. In this paper, we introduce UniCO, a unified model for solving various CO problems. Inspired by the success of next-token prediction, we frame each problem-solving process as a Markov Decision Process (MDP), tokenize the corresponding sequential trajectory data, and train the model using a transformer backbone. To reduce token length in the trajectory data, we propose a CO-prefix design that aggregates static problem features. To address the heterogeneity of state and action tokens within the MDP, we employ a two-stage self-supervised learning approach. In this approach, a dynamic prediction model is first trained and then serves as a pre-trained model for subsequent policy generation. Experiments across 10 CO problems showcase the versatility of UniCO, emphasizing its ability to generalize to new, unseen problems with minimal fine-tuning, achieving even few-shot or zero-shot performance. Our framework offers a valuable complement to existing neural CO methods that focus on optimizing performance for individual problems.
Abstract:Multimodal remote sensing image registration aligns images from different sensors for data fusion and analysis. However, current methods often fail to extract modality-invariant features when aligning image pairs with large nonlinear radiometric differences. To address this issues, we propose OSDM-MReg, a novel multimodal image registration framework based image-to-image translation to eliminate the gap of multimodal images. Firstly, we propose a novel one-step unaligned target-guided conditional denoising diffusion probabilistic models(UTGOS-CDDPM)to translate multimodal images into a unified domain. In the inference stage, traditional conditional DDPM generate translated source image by a large number of iterations, which severely slows down the image registration task. To address this issues, we use the unaligned traget image as a condition to promote the generation of low-frequency features of the translated source image. Furthermore, during the training stage, we add the inverse process of directly predicting the translated image to ensure that the translated source image can be generated in one step during the testing stage. Additionally, to supervised the detail features of translated source image, we propose a new perceptual loss that focuses on the high-frequency feature differences between the translated and ground-truth images. Finally, a multimodal multiscale image registration network (MM-Reg) fuse the multimodal feature of the unimodal images and multimodal images by proposed multimodal feature fusion strategy. Experiments demonstrate superior accuracy and efficiency across various multimodal registration tasks, particularly for SAR-optical image pairs.