Abstract:Purpose: Visualization of subcortical gray matter is essential in neuroscience and clinical practice, particularly for disease understanding and surgical planning.While multi-inversion time (multi-TI) T$_1$-weighted (T$_1$-w) magnetic resonance (MR) imaging improves visualization, it is rarely acquired in clinical settings. Approach: We present SyMTIC (Synthetic Multi-TI Contrasts), a deep learning method that generates synthetic multi-TI images using routinely acquired T$_1$-w, T$_2$-weighted (T$_2$-w), and FLAIR images. Our approach combines image translation via deep neural networks with imaging physics to estimate longitudinal relaxation time (T$_1$) and proton density (PD) maps. These maps are then used to compute multi-TI images with arbitrary inversion times. Results: SyMTIC was trained using paired MPRAGE and FGATIR images along with T$_2$-w and FLAIR images. It accurately synthesized multi-TI images from standard clinical inputs, achieving image quality comparable to that from explicitly acquired multi-TI data.The synthetic images, especially for TI values between 400-800 ms, enhanced visualization of subcortical structures and improved segmentation of thalamic nuclei. Conclusion: SyMTIC enables robust generation of high-quality multi-TI images from routine MR contrasts. It generalizes well to varied clinical datasets, including those with missing FLAIR images or unknown parameters, offering a practical solution for improving brain MR image visualization and analysis.
Abstract:Magnetic resonance (MR) imaging is commonly used in the clinical setting to non-invasively monitor the body. There exists a large variability in MR imaging due to differences in scanner hardware, software, and protocol design. Ideally, a processing algorithm should perform robustly to this variability, but that is not always the case in reality. This introduces a need for image harmonization to overcome issues of domain shift when performing downstream analysis such as segmentation. Most image harmonization models focus on acquisition parameters such as inversion time or repetition time, but they ignore an important aspect in MR imaging -- resolution. In this paper, we evaluate the impact of image resolution on harmonization using a pretrained harmonization algorithm. We simulate 2D acquisitions of various slice thicknesses and gaps from 3D acquired, 1mm3 isotropic MR images and demonstrate how the performance of a state-of-the-art image harmonization algorithm varies as resolution changes. We discuss the most ideal scenarios for image resolution including acquisition orientation when 3D imaging is not available, which is common for many clinical scanners. Our results show that harmonization on low-resolution images does not account for acquisition resolution and orientation variations. Super-resolution can be used to alleviate resolution variations but it is not always used. Our methodology can generalize to help evaluate the impact of image acquisition resolution for multiple tasks. Determining the limits of a pretrained algorithm is important when considering preprocessing steps and trust in the results.
Abstract:Deep learning (DL) has led to significant improvements in medical image synthesis, enabling advanced image-to-image translation to generate synthetic images. However, DL methods face challenges such as domain shift and high demands for training data, limiting their generalizability and applicability. Historically, image synthesis was also carried out using deformable image registration (DIR), a method that warps moving images of a desired modality to match the anatomy of a fixed image. However, concerns about its speed and accuracy led to its decline in popularity. With the recent advances of DL-based DIR, we now revisit and reinvigorate this line of research. In this paper, we propose a fast and accurate synthesis method based on DIR. We use the task of synthesizing a rare magnetic resonance (MR) sequence, white matter nulled (WMn) T1-weighted (T1-w) images, to demonstrate the potential of our approach. During training, our method learns a DIR model based on the widely available MPRAGE sequence, which is a cerebrospinal fluid nulled (CSFn) T1-w inversion recovery gradient echo pulse sequence. During testing, the trained DIR model is first applied to estimate the deformation between moving and fixed CSFn images. Subsequently, this estimated deformation is applied to align the paired WMn counterpart of the moving CSFn image, yielding a synthetic WMn image for the fixed CSFn image. Our experiments demonstrate promising results for unsupervised image synthesis using DIR. These findings highlight the potential of our technique in contexts where supervised synthesis methods are constrained by limited training data.
Abstract:Deep learning algorithms utilizing magnetic resonance (MR) images have demonstrated cutting-edge proficiency in autonomously segmenting multiple sclerosis (MS) lesions. Despite their achievements, these algorithms may struggle to extend their performance across various sites or scanners, leading to domain generalization errors. While few-shot or one-shot domain adaptation emerges as a potential solution to mitigate generalization errors, its efficacy might be hindered by the scarcity of labeled data in the target domain. This paper seeks to tackle this challenge by integrating one-shot adaptation data with harmonized training data that incorporates labels. Our approach involves synthesizing new training data with a contrast akin to that of the test domain, a process we refer to as "contrast harmonization" in MRI. Our experiments illustrate that the amalgamation of one-shot adaptation data with harmonized training data surpasses the performance of utilizing either data source in isolation. Notably, domain adaptation using exclusively harmonized training data achieved comparable or even superior performance compared to one-shot adaptation. Moreover, all adaptations required only minimal fine-tuning, ranging from 2 to 5 epochs for convergence.
Abstract:Development of MR harmonization has enabled different contrast MRIs to be synthesized while preserving the underlying anatomy. In this paper, we use image harmonization to explore the impact of different T1-w MR contrasts on a state-of-the-art ventricle parcellation algorithm VParNet. We identify an optimal operating contrast (OOC) for ventricle parcellation; by showing that the performance of a pretrained VParNet can be boosted by adjusting contrast to the OOC.