UniverseTBD
Abstract:Artificial intelligence is rapidly transforming astronomical research, yet the scientific community has largely treated this transformation as an engineering challenge rather than an epistemological one. This perspective article argues that philosophy of science offers essential tools for navigating AI's integration into astronomy--conceptual clarity about what "understanding" means, critical examination of assumptions about data and discovery, and frameworks for evaluating AI's roles across different research contexts. Drawing on an interdisciplinary workshop convening astronomers, philosophers, and computer scientists, we identify several tensions. First, the narrative that AI will "derive fundamental physics" from data misconstrues contemporary astronomy as equation-derivation rather than the observation-driven enterprise it is. Second, scientific understanding involves more than prediction--it requires narrative construction, contextual judgment, and communicative achievement that current AI architectures struggle to provide. Third, because narrative and judgment matter, human peer review remains essential--yet AI-generated content flooding the literature threatens our capacity to identify genuine insight. Fourth, while AI excels at well-defined problem-solving, the ill-defined problem-finding that drives breakthroughs appears to require capacities beyond pattern recognition. Fifth, as AI accelerates what is feasible, pursuitworthiness criteria risk shifting toward what AI makes easy rather than what is genuinely important. We propose "pragmatic understanding" as a framework for integration--recognizing AI as a tool that extends human cognition while requiring new norms for validation and epistemic evaluation. Engaging with these questions now may help the community shape the transformation rather than merely react to it.
Abstract:Attenuation bias -- the systematic underestimation of regression coefficients due to measurement errors in input variables -- affects astronomical data-driven models. For linear regression, this problem was solved by treating the true input values as latent variables to be estimated alongside model parameters. In this paper, we show that neural networks suffer from the same attenuation bias and that the latent variable solution generalizes directly to neural networks. We introduce LatentNN, a method that jointly optimizes network parameters and latent input values by maximizing the joint likelihood of observing both inputs and outputs. We demonstrate the correction on one-dimensional regression, multivariate inputs with correlated features, and stellar spectroscopy applications. LatentNN reduces attenuation bias across a range of signal-to-noise ratios where standard neural networks show large bias. This provides a framework for improved neural network inference in the low signal-to-noise regime characteristic of astronomical data. This bias correction is most effective when measurement errors are less than roughly half the intrinsic data range; in the regime of very low signal-to-noise and few informative features. Code is available at https://github.com/tingyuansen/LatentNN.
Abstract:While task-specific demonstrations show early success in applying large language models (LLMs) to automate some astronomical research tasks, they only provide incomplete views of all necessary capabilities in solving astronomy problems, calling for more thorough understanding of LLMs' strengths and limitations. So far, existing benchmarks and evaluations focus on simple question-answering that primarily tests astronomical knowledge and fails to evaluate the complex reasoning required for real-world research in the discipline. Here, we address this gap by systematically benchmarking five state-of-the-art LLMs on the International Olympiad on Astronomy and Astrophysics (IOAA) exams, which are designed to examine deep conceptual understanding, multi-step derivations, and multimodal analysis. With average scores of 85.6% and 84.2%, Gemini 2.5 Pro and GPT-5 (the two top-performing models) not only achieve gold medal level performance but also rank in the top two among ~200-300 participants in all four IOAA theory exams evaluated (2022-2025). In comparison, results on the data analysis exams show more divergence. GPT-5 still excels in the exams with an 88.5% average score, ranking top 10 among the participants in the four most recent IOAAs, while other models' performances drop to 48-76%. Furthermore, our in-depth error analysis underscores conceptual reasoning, geometric reasoning, and spatial visualization (52-79% accuracy) as consistent weaknesses among all LLMs. Hence, although LLMs approach peak human performance in theory exams, critical gaps must be addressed before they can serve as autonomous research agents in astronomy.
Abstract:Being able to effectively read scientific plots, or chart understanding, is a central part toward building effective agents for science. However, existing multimodal large language models (MLLMs), especially open-source ones, are still falling behind with a typical success rate of 30%-50% on challenging benchmarks. Previous studies on fine-tuning MLLMs with synthetic charts are often restricted by their inadequate similarity to the real charts, which could compromise model training and performance on complex real-world charts. In this study, we show that modularizing chart generation and diversifying visual details improves chart understanding capabilities. In particular, we design a five-step data synthesis pipeline, where we separate data and function creation for single plot generation, condition the generation of later subplots on earlier ones for multi-subplot figures, visually diversify the generated figures, filter out low quality data, and finally generate the question-answer (QA) pairs with GPT-4o. This approach allows us to streamline the generation of fine-tuning datasets and introduce the effective chart dataset (ECD), which contains 10k+ chart images and 300k+ QA pairs, covering 25 topics and featuring 250+ chart type combinations with high visual complexity. We show that ECD consistently improves the performance of various MLLMs on a range of real-world and synthetic test sets. Code, data and models are available at: https://github.com/yuweiyang-anu/ECD.
Abstract:In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
Abstract:This textbook provides a systematic treatment of statistical machine learning for astronomical research through the lens of Bayesian inference, developing a unified framework that reveals connections between modern data analysis techniques and traditional statistical methods. We show how these techniques emerge from familiar statistical foundations. The consistently Bayesian perspective prioritizes uncertainty quantification and statistical rigor essential for scientific inference in astronomy. The textbook progresses from probability theory and Bayesian inference through supervised learning including linear regression with measurement uncertainties, logistic regression, and classification. Unsupervised learning topics cover Principal Component Analysis and clustering methods. We then introduce computational techniques through sampling and Markov Chain Monte Carlo, followed by Gaussian Processes as probabilistic nonparametric methods and neural networks within the broader statistical context. Our theory-focused pedagogical approach derives each method from first principles with complete mathematical development, emphasizing statistical insight and complementing with astronomical applications. We prioritize understanding why algorithms work, when they are appropriate, and how they connect to broader statistical principles. The treatment builds toward modern techniques including neural networks through a solid foundation in classical methods and their theoretical underpinnings. This foundation enables thoughtful application of these methods to astronomical research, ensuring proper consideration of assumptions, limitations, and uncertainty propagation essential for advancing astronomical knowledge in the era of large astronomical surveys.
Abstract:General-purpose large language models, despite their broad capabilities, often struggle with specialized domain knowledge, a limitation particularly pronounced in more accessible, lower-parameter versions. This gap hinders their deployment as effective agents in demanding fields such as astronomy. Building on our prior work with AstroSage-8B, this study introduces AstroSage-70B, a significantly larger and more advanced domain-specialized natural-language AI assistant. It is designed for research and education across astronomy, astrophysics, space science, astroparticle physics, cosmology, and astronomical instrumentation. Developed from the Llama-3.1-70B foundation, AstroSage-70B underwent extensive continued pre-training on a vast corpus of astronomical literature, followed by supervised fine-tuning and model merging. Beyond its 70-billion parameter scale, this model incorporates refined datasets, judiciously chosen learning hyperparameters, and improved training procedures, achieving state-of-the-art performance on complex astronomical tasks. Notably, we integrated reasoning chains into the SFT dataset, enabling AstroSage-70B to either answer the user query immediately, or first emit a human-readable thought process. Evaluated on the AstroMLab-1 benchmark -- comprising 4,425 questions from literature withheld during training -- AstroSage-70B achieves state-of-the-art performance. It surpasses all other tested open-weight and proprietary models, including leading systems like o3, Gemini-2.5-Pro, Claude-3.7-Sonnet, Deepseek-R1, and Qwen-3-235B, even those with API costs two orders of magnitude higher. This work demonstrates that domain specialization, when applied to large-scale models, can enable them to outperform generalist counterparts in specialized knowledge areas like astronomy, thereby advancing the frontier of AI capabilities in the field.
Abstract:Neural network-based emulators for the inference of stellar parameters and elemental abundances represent an increasingly popular methodology in modern spectroscopic surveys. However, these approaches are often constrained by their emulation precision and domain transfer capabilities. Greater generalizability has previously been achieved only with significantly larger model architectures, as demonstrated by Transformer-based models in natural language processing. This observation aligns with neural scaling laws, where model performance predictably improves with increased model size, computational resources allocated to model training, and training data volume. In this study, we demonstrate that these scaling laws also apply to Transformer-based spectral emulators in astronomy. Building upon our previous work with TransformerPayne and incorporating Maximum Update Parametrization techniques from natural language models, we provide training guidelines for scaling models to achieve optimal performance. Our results show that within the explored parameter space, clear scaling relationships emerge. These findings suggest that optimal computational resource allocation requires balanced scaling. Specifically, given a tenfold increase in training compute, achieving an optimal seven-fold reduction in mean squared error necessitates an approximately 2.5-fold increase in dataset size and a 3.8-fold increase in model size. This study establishes a foundation for developing spectral foundational models with enhanced domain transfer capabilities.
Abstract:Recent advancements have positioned AI, and particularly Large Language Models (LLMs), as transformative tools for scientific research, capable of addressing complex tasks that require reasoning, problem-solving, and decision-making. Their exceptional capabilities suggest their potential as scientific research assistants but also highlight the need for holistic, rigorous, and domain-specific evaluation to assess effectiveness in real-world scientific applications. This paper describes a multifaceted methodology for Evaluating AI models as scientific Research Assistants (EAIRA) developed at Argonne National Laboratory. This methodology incorporates four primary classes of evaluations. 1) Multiple Choice Questions to assess factual recall; 2) Open Response to evaluate advanced reasoning and problem-solving skills; 3) Lab-Style Experiments involving detailed analysis of capabilities as research assistants in controlled environments; and 4) Field-Style Experiments to capture researcher-LLM interactions at scale in a wide range of scientific domains and applications. These complementary methods enable a comprehensive analysis of LLM strengths and weaknesses with respect to their scientific knowledge, reasoning abilities, and adaptability. Recognizing the rapid pace of LLM advancements, we designed the methodology to evolve and adapt so as to ensure its continued relevance and applicability. This paper describes the methodology state at the end of February 2025. Although developed within a subset of scientific domains, the methodology is designed to be generalizable to a wide range of scientific domains.




Abstract:Obtaining well-calibrated photometric redshift probability densities for galaxies without a spectroscopic measurement remains a challenge. Deep learning discriminative models, typically fed with multi-band galaxy images, can produce outputs that mimic probability densities and achieve state-of-the-art accuracy. However, such models may be affected by miscalibration that would result in discrepancies between the model outputs and the actual distributions of true redshifts. Our work develops a novel method called the Contrastive Learning and Adaptive KNN for Photometric Redshift (CLAP) that resolves this issue. It leverages supervised contrastive learning (SCL) and k-nearest neighbours (KNN) to construct and calibrate raw probability density estimates, and implements a refitting procedure to resume end-to-end discriminative models ready to produce final estimates for large-scale imaging data. The harmonic mean is adopted to combine an ensemble of estimates from multiple realisations for improving accuracy. Our experiments demonstrate that CLAP takes advantage of both deep learning and KNN, outperforming benchmark methods on the calibration of probability density estimates and retaining high accuracy and computational efficiency. With reference to CLAP, we point out that miscalibration is particularly sensitive to the method-induced excessive correlations among data instances in addition to the unaccounted-for epistemic uncertainties. Reducing the uncertainties may not guarantee the removal of miscalibration due to the presence of such excessive correlations, yet this is a problem for conventional deep learning methods rather than CLAP. These discussions underscore the robustness of CLAP for obtaining photometric redshift probability densities required by astrophysical and cosmological applications. This is the first paper in our series on CLAP.