3D Semantic Segmentation is a computer vision task that involves dividing a 3D point cloud or 3D mesh into semantically meaningful parts or regions. The goal of 3D semantic segmentation is to identify and label different objects and parts within a 3D scene, which can be used for applications such as robotics, autonomous driving, and augmented reality.
This paper provides a review of deep learning applications in scene understanding in autonomous robots, including innovations in object detection, semantic and instance segmentation, depth estimation, 3D reconstruction, and visual SLAM. It emphasizes how these techniques address limitations of traditional geometric models, improve depth perception in real time despite occlusions and textureless surfaces, and enhance semantic reasoning to understand the environment better. When these perception modules are integrated into dynamic and unstructured environments, they become more effective in decisionmaking, navigation and interaction. Lastly, the review outlines the existing problems and research directions to advance learning-based scene understanding of autonomous robots.




Holistic 3D scene understanding involves capturing and parsing unstructured 3D environments. Due to the inherent complexity of the real world, existing models have predominantly been developed and limited to be task-specific. We introduce UNITE, a Unified Semantic Transformer for 3D scene understanding, a novel feed-forward neural network that unifies a diverse set of 3D semantic tasks within a single model. Our model operates on unseen scenes in a fully end-to-end manner and only takes a few seconds to infer the full 3D semantic geometry. Our approach is capable of directly predicting multiple semantic attributes, including 3D scene segmentation, instance embeddings, open-vocabulary features, as well as affordance and articulations, solely from RGB images. The method is trained using a combination of 2D distillation, heavily relying on self-supervision and leverages novel multi-view losses designed to ensure 3D view consistency. We demonstrate that UNITE achieves state-of-the-art performance on several different semantic tasks and even outperforms task-specific models, in many cases, surpassing methods that operate on ground truth 3D geometry. See the project website at unite-page.github.io
Few-shot 3D point cloud semantic segmentation (FS-3DSeg) aims to segment novel classes with only a few labeled samples. However, existing metric-based prototype learning methods generate prototypes solely from the support set, without considering their relevance to query data. This often results in prototype bias, where prototypes overfit support-specific characteristics and fail to generalize to the query distribution, especially in the presence of distribution shifts, which leads to degraded segmentation performance. To address this issue, we propose a novel Query-aware Hub Prototype (QHP) learning method that explicitly models semantic correlations between support and query sets. Specifically, we propose a Hub Prototype Generation (HPG) module that constructs a bipartite graph connecting query and support points, identifies frequently linked support hubs, and generates query-relevant prototypes that better capture cross-set semantics. To further mitigate the influence of bad hubs and ambiguous prototypes near class boundaries, we introduce a Prototype Distribution Optimization (PDO) module, which employs a purity-reweighted contrastive loss to refine prototype representations by pulling bad hubs and outlier prototypes closer to their corresponding class centers. Extensive experiments on S3DIS and ScanNet demonstrate that QHP achieves substantial performance gains over state-of-the-art methods, effectively narrowing the semantic gap between prototypes and query sets in FS-3DSeg.
At the most basic level, pixels are the source of the visual information through which we perceive the world. Pixels contain information at all levels, ranging from low-level attributes to high-level concepts. Autoencoders represent a classical and long-standing paradigm for learning representations from pixels or other raw inputs. In this work, we demonstrate that autoencoder-based self-supervised learning remains competitive today and can produce strong representations for downstream tasks, while remaining simple, stable, and efficient. Our model, codenamed "Pixio", is an enhanced masked autoencoder (MAE) with more challenging pre-training tasks and more capable architectures. The model is trained on 2B web-crawled images with a self-curation strategy with minimal human curation. Pixio performs competitively across a wide range of downstream tasks in the wild, including monocular depth estimation (e.g., Depth Anything), feed-forward 3D reconstruction (i.e., MapAnything), semantic segmentation, and robot learning, outperforming or matching DINOv3 trained at similar scales. Our results suggest that pixel-space self-supervised learning can serve as a promising alternative and a complement to latent-space approaches.
3D reconstruction of medical images is a key technology in medical image analysis and clinical diagnosis, providing structural visualization support for disease assessment and surgical planning. Traditional methods are computationally expensive and prone to structural discontinuities and loss of detail in sparse slices, making it difficult to meet clinical accuracy requirements.To address these challenges, we propose an efficient 3D reconstruction method based on 3D Gaussian and tri-plane representations. This method not only maintains the advantages of Gaussian representation in efficient rendering and geometric representation but also significantly enhances structural continuity and semantic consistency under sparse slicing conditions. Experimental results on multimodal medical datasets such as US and MRI show that our proposed method can generate high-quality, anatomically coherent, and semantically stable medical images under sparse data conditions, while significantly improving reconstruction efficiency. This provides an efficient and reliable new approach for 3D visualization and clinical analysis of medical images.




Generating 3D human motions from textual descriptions is an important research problem with broad applications in video games, virtual reality, and augmented reality. Recent methods align the textual description with human motion at the sequence level, neglecting the internal semantic structure of modalities. However, both motion descriptions and motion sequences can be naturally decomposed into smaller and semantically coherent segments, which can serve as atomic alignment units to achieve finer-grained correspondence. Motivated by this, we propose SegMo, a novel Segment-aligned text-conditioned human Motion generation framework to achieve fine-grained text-motion alignment. Our framework consists of three modules: (1) Text Segment Extraction, which decomposes complex textual descriptions into temporally ordered phrases, each representing a simple atomic action; (2) Motion Segment Extraction, which partitions complete motion sequences into corresponding motion segments; and (3) Fine-grained Text-Motion Alignment, which aligns text and motion segments with contrastive learning. Extensive experiments demonstrate that SegMo improves the strong baseline on two widely used datasets, achieving an improved TOP 1 score of 0.553 on the HumanML3D test set. Moreover, thanks to the learned shared embedding space for text and motion segments, SegMo can also be applied to retrieval-style tasks such as motion grounding and motion-to-text retrieval.
The application of self-supervised learning (SSL) and Vision Transformers (ViTs) approaches demonstrates promising results in the field of 2D medical imaging, but the use of these methods on 3D volumetric images is fraught with difficulties. Standard Masked Autoencoders (MAE), which are state-of-the-art solution for 2D, have a hard time capturing three-dimensional spatial relationships, especially when 75% of tokens are discarded during pre-training. We propose BertsWin, a hybrid architecture combining full BERT-style token masking using Swin Transformer windows, to enhance spatial context learning in 3D during SSL pre-training. Unlike the classic MAE, which processes only visible areas, BertsWin introduces a complete 3D grid of tokens (masked and visible), preserving the spatial topology. And to smooth out the quadratic complexity of ViT, single-level local Swin windows are used. We introduce a structural priority loss function and evaluate the results of cone beam computed tomography of the temporomandibular joints. The subsequent assessment includes TMJ segmentation on 3D CT scans. We demonstrate that the BertsWin architecture, by maintaining a complete three-dimensional spatial topology, inherently accelerates semantic convergence by a factor of 5.8x compared to standard ViT-MAE baselines. Furthermore, when coupled with our proposed GradientConductor optimizer, the full BertsWin framework achieves a 15-fold reduction in training epochs (44 vs 660) required to reach state-of-the-art reconstruction fidelity. Analysis reveals that BertsWin achieves this acceleration without the computational penalty typically associated with dense volumetric processing. At canonical input resolutions, the architecture maintains theoretical FLOP parity with sparse ViT baselines, resulting in a significant net reduction in total computational resources due to faster convergence.




Understanding spatial openness is vital for improving residential quality and design; however, studies often treat its influencing factors separately. This study developed a quantitative framework to evaluate the spatial openness in housing from two- (2D) and three- (3D) dimensional perspectives. Using data from 4,004 rental units in Tokyo's 23 wards, we examined the temporal and spatial variations in openness and its relationship with rent and housing attributes. 2D openness was computed via planar visibility using visibility graph analysis (VGA) from floor plans, whereas 3D openness was derived from interior images analysed using Mask2Former, a semantic segmentation model that identifies walls, ceilings, floors, and windows. The results showed an increase in living room visibility and a 1990s peak in overall openness. Spatial analyses revealed partial correlations among openness, rent, and building characteristics, reflecting urban redevelopment trends. Although the 2D and 3D openness indicators were not directly correlated, higher openness tended to correspond to higher rent. The impression scores predicted by the existing models were only weakly related to openness, suggesting that the interior design and furniture more strongly shape perceived space. This study offers a new multidimensional data-driven framework for quantifying residential spatial openness and linking it with urban and market dynamics.
This work presents a novel framework for few-shot 3D part segmentation. Recent advances have demonstrated the significant potential of 2D foundation models for low-shot 3D part segmentation. However, it is still an open problem that how to effectively aggregate 2D knowledge from foundation models to 3D. Existing methods either ignore geometric structures for 3D feature learning or neglects the high-quality grouping clues from SAM, leading to under-segmentation and inconsistent part labels. We devise a novel SAM segment graph-based propagation method, named SegGraph, to explicitly learn geometric features encoded within SAM's segmentation masks. Our method encodes geometric features by modeling mutual overlap and adjacency between segments while preserving intra-segment semantic consistency. We construct a segment graph, conceptually similar to an atlas, where nodes represent segments and edges capture their spatial relationships (overlap/adjacency). Each node adaptively modulates 2D foundation model features, which are then propagated via a graph neural network to learn global geometric structures. To enforce intra-segment semantic consistency, we map segment features to 3D points with a novel view-direction-weighted fusion attenuating contributions from low-quality segments. Extensive experiments on PartNet-E demonstrate that our method outperforms all competing baselines by at least 6.9 percent mIoU. Further analysis reveals that SegGraph achieves particularly strong performance on small components and part boundaries, demonstrating its superior geometric understanding. The code is available at: https://github.com/YueyangHu2000/SegGraph.
Recent advances in self-supervised learning (SSL) have shown tremendous potential for learning 3D point cloud representations without human annotations. However, SSL for 3D point clouds still faces critical challenges due to irregular geometry, shortcut-prone reconstruction, and unbalanced semantics distribution. In this work, we propose DOS (Distilling Observable Softmaps), a novel SSL framework that self-distills semantic relevance softmaps only at observable (unmasked) points. This strategy prevents information leakage from masked regions and provides richer supervision than discrete token-to-prototype assignments. To address the challenge of unbalanced semantics in an unsupervised setting, we introduce Zipfian prototypes and incorporate them using a modified Sinkhorn-Knopp algorithm, Zipf-Sinkhorn, which enforces a power-law prior over prototype usage and modulates the sharpness of the target softmap during training. DOS outperforms current state-of-the-art methods on semantic segmentation and 3D object detection across multiple benchmarks, including nuScenes, Waymo, SemanticKITTI, ScanNet, and ScanNet200, without relying on extra data or annotations. Our results demonstrate that observable-point softmaps distillation offers a scalable and effective paradigm for learning robust 3D representations.