Abstract:Vision-Language-Action (VLA) models achieve preliminary generalization through pretraining on large scale robot teleoperation datasets. However, acquiring datasets that comprehensively cover diverse tasks and environments is extremely costly and difficult to scale. In contrast, human demonstration videos offer a rich and scalable source of diverse scenes and manipulation behaviors, yet their lack of explicit action supervision hinders direct utilization. Prior work leverages VQ-VAE based frameworks to learn latent actions from human videos in an unsupervised manner. Nevertheless, since the training objective primarily focuses on reconstructing visual appearances rather than capturing inter-frame dynamics, the learned representations tend to rely on spurious visual cues, leading to shortcut learning and entangled latent representations that hinder transferability. To address this, we propose ConLA, an unsupervised pretraining framework for learning robotic policies from human videos. ConLA introduces a contrastive disentanglement mechanism that leverages action category priors and temporal cues to isolate motion dynamics from visual content, effectively mitigating shortcut learning. Extensive experiments show that ConLA achieves strong performance across diverse benchmarks. Notably, by pretraining solely on human videos, our method for the first time surpasses the performance obtained with real robot trajectory pretraining, highlighting its ability to extract pure and semantically consistent latent action representations for scalable robot learning.
Abstract:We study the problem of unsupervised 3D semantic segmentation on raw point clouds without needing human labels in training. Existing methods usually formulate this problem into learning per-point local features followed by a simple grouping strategy, lacking the ability to discover additional and possibly richer semantic priors beyond local features. In this paper, we introduce LogoSP to learn 3D semantics from both local and global point features. The key to our approach is to discover 3D semantic information by grouping superpoints according to their global patterns in the frequency domain, thus generating highly accurate semantic pseudo-labels for training a segmentation network. Extensive experiments on two indoor and an outdoor datasets show that our LogoSP surpasses all existing unsupervised methods by large margins, achieving the state-of-the-art performance for unsupervised 3D semantic segmentation. Notably, our investigation into the learned global patterns reveals that they truly represent meaningful 3D semantics in the absence of human labels during training.