The early 2020s has seen the rise of two strange and potentially quite impactful social phenomena, namely pseudolaw, where users rely upon pseudolegal arguments that mimic the form and ritual of legal argumentation but fundamentally distort the content of law, and generative AI/LLMs, which generate content that uses probabilistic calculations to create outputs that look like human generated text. This article argues that the juxtaposition of the two phenomena helps to reveal that they both share two fundamental traits as both elevate form and appearance over substance and content, and users of both routinely mistake the form for the substance. In drawing upon legal theory, computer science, linguistics and cognitive psychology, the article argues that both phenomena rely upon creating illusions of meaning that users mistake for the underlying primary phenomenon. I then explore four implications of this conception of both phenomena. Firstly, both rely on human tendencies of conceptual pareidolia resulting in the erroneous perception of meaningful linguistic legal patterns from nebulous inputs. Secondly, both rely upon the confidence heuristic, the human cognitive bias for treating confidence as a proxy for competence. Thirdly, both succeed when the primary concern is with the form of the output and not its content. Fourthly, both rely heavily upon the magical thinking of users and the desire for the promise of the approach to be real. The article argues that the legal context helps to reveal a solution for the problems caused by both phenomena as it is only where users possess sufficient legal and technological literacy that it becomes possible to reveal to them the illusionary nature of the phenomena.
The customization of multiple attributes has gained popularity with the rising demand for personalized content creation. Despite promising empirical results, the contextual coherence between different attributes has been largely overlooked. In this paper, we argue that subsequent attributes should follow the multivariable conditional distribution introduced by former attribute creation. In light of this, we reformulate multi-attribute creation from a conditional probability theory perspective and tackle the challenging zero-shot setting. By explicitly modeling the dependencies between attributes, we further enhance the coherence of generated images across diverse attribute combinations. Furthermore, we identify connections between multi-attribute customization and multi-task learning, effectively addressing the high computing cost encountered in multi-attribute synthesis. Extensive experiments demonstrate that Z-Magic outperforms existing models in zero-shot image generation, with broad implications for AI-driven design and creative applications.
Reinforced random walks (RRWs), including vertex-reinforced random walks (VRRWs) and edge-reinforced random walks (ERRWs), model random walks where the transition probabilities evolve based on prior visitation history~\cite{mgr, fmk, tarres, volkov}. These models have found applications in various areas, such as network representation learning~\cite{xzzs}, reinforced PageRank~\cite{gly}, and modeling animal behaviors~\cite{smouse}, among others. However, statistical estimation of the parameters governing RRWs remains underexplored. This work focuses on estimating the initial edge weights of ERRWs using observed trajectory data. Leveraging the connections between an ERRW and a random walk in a random environment (RWRE)~\cite{mr, mr2}, as given by the so-called "magic formula", we propose an estimator based on the generalized method of moments. To analyze the sample complexity of our estimator, we exploit the hyperbolic Gaussian structure embedded in the random environment to bound the fluctuations of the underlying random edge conductances.
"Magic" is referred to here and there in the robotics literature, from "magical moments" afforded by a mobile bubble machine, to "spells" intended to entertain and motivate children--but what exactly could this concept mean for designers? Here, we present (1) some theoretical discussion on how magic could inform interaction designs based on reviewing the literature, followed by (2) a practical description of using such ideas to develop a simplified prototype, which received an award in an international robot magic competition. Although this topic can be considered unusual and some negative connotations exist (e.g., unrealistic thinking can be referred to as magical), our results seem to suggest that magic, in the experiential, supernatural, and illusory senses of the term, could be useful to consider in various robot design contexts, also for artifacts like home assistants and autonomous vehicles--thus, inviting further discussion and exploration.
The reasoning abilities are one of the most enigmatic and captivating aspects of large language models (LLMs). Numerous studies are dedicated to exploring and expanding the boundaries of this reasoning capability. However, tasks that embody both reasoning and recall characteristics are often overlooked. In this paper, we introduce such a novel task, code reasoning, to provide a new perspective for the reasoning abilities of LLMs. We summarize three meta-benchmarks based on established forms of logical reasoning, and instantiate these into eight specific benchmark tasks. Our testing on these benchmarks reveals that LLMs continue to struggle with identifying satisfactory reasoning pathways. Additionally, we present a new pathway exploration pipeline inspired by human intricate problem-solving methods. This Reflective Hypothesis Decomposition and Amendment (RHDA) pipeline consists of the following iterative steps: (1) Proposing potential hypotheses based on observations and decomposing them; (2) Utilizing tools to validate hypotheses and reflection outcomes; (3) Revising hypothesis in light of observations. Our approach effectively mitigates logical chain collapses arising from forgetting or hallucination issues in multi-step reasoning, resulting in performance gains of up to $3\times$. Finally, we expanded this pipeline by applying it to simulate complex household tasks in real-world scenarios, specifically in VirtualHome, enhancing the handling of failure cases. We release our code and all of results at https://github.com/TnTWoW/code_reasoning.
In this technical report, we present Magic 1-For-1 (Magic141), an efficient video generation model with optimized memory consumption and inference latency. The key idea is simple: factorize the text-to-video generation task into two separate easier tasks for diffusion step distillation, namely text-to-image generation and image-to-video generation. We verify that with the same optimization algorithm, the image-to-video task is indeed easier to converge over the text-to-video task. We also explore a bag of optimization tricks to reduce the computational cost of training the image-to-video (I2V) models from three aspects: 1) model convergence speedup by using a multi-modal prior condition injection; 2) inference latency speed up by applying an adversarial step distillation, and 3) inference memory cost optimization with parameter sparsification. With those techniques, we are able to generate 5-second video clips within 3 seconds. By applying a test time sliding window, we are able to generate a minute-long video within one minute with significantly improved visual quality and motion dynamics, spending less than 1 second for generating 1 second video clips on average. We conduct a series of preliminary explorations to find out the optimal tradeoff between computational cost and video quality during diffusion step distillation and hope this could be a good foundation model for open-source explorations. The code and the model weights are available at https://github.com/DA-Group-PKU/Magic-1-For-1.
Crafting magic and illusions is one of the most thrilling aspects of filmmaking, with visual effects (VFX) serving as the powerhouse behind unforgettable cinematic experiences. While recent advances in generative artificial intelligence have driven progress in generic image and video synthesis, the domain of controllable VFX generation remains relatively underexplored. In this work, we propose a novel paradigm for animated VFX generation as image animation, where dynamic effects are generated from user-friendly textual descriptions and static reference images. Our work makes two primary contributions: (i) Open-VFX, the first high-quality VFX video dataset spanning 15 diverse effect categories, annotated with textual descriptions, instance segmentation masks for spatial conditioning, and start-end timestamps for temporal control. (ii) VFX Creator, a simple yet effective controllable VFX generation framework based on a Video Diffusion Transformer. The model incorporates a spatial and temporal controllable LoRA adapter, requiring minimal training videos. Specifically, a plug-and-play mask control module enables instance-level spatial manipulation, while tokenized start-end motion timestamps embedded in the diffusion process, alongside the text encoder, allow precise temporal control over effect timing and pace. Extensive experiments on the Open-VFX test set demonstrate the superiority of the proposed system in generating realistic and dynamic effects, achieving state-of-the-art performance and generalization ability in both spatial and temporal controllability. Furthermore, we introduce a specialized metric to evaluate the precision of temporal control. By bridging traditional VFX techniques with generative approaches, VFX Creator unlocks new possibilities for efficient and high-quality video effect generation, making advanced VFX accessible to a broader audience.
Groundbreaking advancements in text-to-image generation have recently been achieved with the emergence of diffusion models. These models exhibit a remarkable ability to generate highly artistic and intricately detailed images based on textual prompts. However, obtaining desired generation outcomes often necessitates repetitive trials of manipulating text prompts just like casting spells on a magic mirror, and the reason behind that is the limited capability of semantic understanding inherent in current image generation models. Specifically, existing diffusion models encode the text prompt input with a pre-trained encoder structure, which is usually trained on a limited number of image-caption pairs. The state-of-the-art large language models (LLMs) based on the decoder-only structure have shown a powerful semantic understanding capability as their architectures are more suitable for training on very large-scale unlabeled data. In this work, we propose to enhance text-to-image diffusion models by borrowing the strength of semantic understanding from large language models, and devise a simple yet effective adapter to allow the diffusion models to be compatible with the decoder-only structure. Meanwhile, we also provide a supporting theoretical analysis with various architectures (e.g., encoder-only, encoder-decoder, and decoder-only), and conduct extensive empirical evaluations to verify its effectiveness. The experimental results show that the enhanced models with our adapter module are superior to the stat-of-the-art models in terms of text-to-image generation quality and reliability.
This study proposes an innovative multimodal fusion model based on a teacher-student architecture to enhance the accuracy of depression classification. Our designed model addresses the limitations of traditional methods in feature fusion and modality weight allocation by introducing multi-head attention mechanisms and weighted multimodal transfer learning. Leveraging the DAIC-WOZ dataset, the student fusion model, guided by textual and auditory teacher models, achieves significant improvements in classification accuracy. Ablation experiments demonstrate that the proposed model attains an F1 score of 99. 1% on the test set, significantly outperforming unimodal and conventional approaches. Our method effectively captures the complementarity between textual and audio features while dynamically adjusting the contributions of the teacher models to enhance generalization capabilities. The experimental results highlight the robustness and adaptability of the proposed framework in handling complex multimodal data. This research provides a novel technical framework for multimodal large model learning in depression analysis, offering new insights into addressing the limitations of existing methods in modality fusion and feature extraction.




The security issue of large language models (LLMs) has gained significant attention recently, with various defense mechanisms developed to prevent harmful outputs, among which safeguards based on text embedding models serve as a fundamental defense. Through testing, we discover that the distribution of text embedding model outputs is significantly biased with a large mean. Inspired by this observation, we propose novel efficient methods to search for universal magic words that can attack text embedding models. The universal magic words as suffixes can move the embedding of any text towards the bias direction, therefore manipulate the similarity of any text pair and mislead safeguards. By appending magic words to user prompts and requiring LLMs to end answers with magic words, attackers can jailbreak the safeguard. To eradicate this security risk, we also propose defense mechanisms against such attacks, which can correct the biased distribution of text embeddings in a train-free manner.