Alert button
Picture for Yuze Zhao

Yuze Zhao

Alert button

FaceChain: A Playground for Identity-Preserving Portrait Generation

Aug 28, 2023
Yang Liu, Cheng Yu, Lei Shang, Ziheng Wu, Xingjun Wang, Yuze Zhao, Lin Zhu, Chen Cheng, Weitao Chen, Chao Xu, Haoyu Xie, Yuan Yao, Wenmeng Zhou, Yingda Chen, Xuansong Xie, Baigui Sun

Figure 1 for FaceChain: A Playground for Identity-Preserving Portrait Generation
Figure 2 for FaceChain: A Playground for Identity-Preserving Portrait Generation

Recent advancement in personalized image generation have unveiled the intriguing capability of pre-trained text-to-image models on learning identity information from a collection of portrait images. However, existing solutions can be vulnerable in producing truthful details, and usually suffer from several defects such as (i) The generated face exhibit its own unique characteristics, \ie facial shape and facial feature positioning may not resemble key characteristics of the input, and (ii) The synthesized face may contain warped, blurred or corrupted regions. In this paper, we present FaceChain, a personalized portrait generation framework that combines a series of customized image-generation model and a rich set of face-related perceptual understanding models (\eg, face detection, deep face embedding extraction, and facial attribute recognition), to tackle aforementioned challenges and to generate truthful personalized portraits, with only a handful of portrait images as input. Concretely, we inject several SOTA face models into the generation procedure, achieving a more efficient label-tagging, data-processing, and model post-processing compared to previous solutions, such as DreamBooth ~\cite{ruiz2023dreambooth} , InstantBooth ~\cite{shi2023instantbooth} , or other LoRA-only approaches ~\cite{hu2021lora} . Through the development of FaceChain, we have identified several potential directions to accelerate development of Face/Human-Centric AIGC research and application. We have designed FaceChain as a framework comprised of pluggable components that can be easily adjusted to accommodate different styles and personalized needs. We hope it can grow to serve the burgeoning needs from the communities. FaceChain is open-sourced under Apache-2.0 license at \url{https://github.com/modelscope/facechain}.

* This is an ongoing work that will be consistently refined and improved upon 
Viaarxiv icon

A New Clustering neural network for Chinese word segmentation

Feb 18, 2020
Yuze Zhao

Figure 1 for A New Clustering neural network for Chinese word segmentation
Figure 2 for A New Clustering neural network for Chinese word segmentation
Figure 3 for A New Clustering neural network for Chinese word segmentation
Figure 4 for A New Clustering neural network for Chinese word segmentation

In this article I proposed a new model to achieve Chinese word segmentation(CWS),which may have the potentiality to apply in other domains in the future.It is a new thinking in CWS compared to previous works,to consider it as a clustering problem instead of a labeling problem.In this model,LSTM and self attention structures are used to collect context also sentence level features in every layer,and after several layers,a clustering model is applied to split characters into groups,which are the final segmentation results.I call this model CLNN.This algorithm can reach 98 percent of F score (without OOV words) and 85 percent to 95 percent F score (with OOV words) in training data sets.Error analyses shows that OOV words will greatly reduce performances,which needs a deeper research in the future.

Viaarxiv icon