Topic:Nested Named Entity Recognition
What is Nested Named Entity Recognition? Nested named entity recognition is the process of identifying and categorizing named entities with nested or overlapping spans.
Papers and Code
Mar 09, 2022
Abstract:Nested named entity recognition (NER) has been receiving increasing attention. Recently, (Fu et al, 2021) adapt a span-based constituency parser to tackle nested NER. They treat nested entities as partially-observed constituency trees and propose the masked inside algorithm for partial marginalization. However, their method cannot leverage entity heads, which have been shown useful in entity mention detection and entity typing. In this work, we resort to more expressive structures, lexicalized constituency trees in which constituents are annotated by headwords, to model nested entities. We leverage the Eisner-Satta algorithm to perform partial marginalization and inference efficiently. In addition, we propose to use (1) a two-stage strategy (2) a head regularization loss and (3) a head-aware labeling loss in order to enhance the performance. We make a thorough ablation study to investigate the functionality of each component. Experimentally, our method achieves the state-of-the-art performance on ACE2004, ACE2005 and NNE, and competitive performance on GENIA, and meanwhile has a fast inference speed.
* ACL 2022 camera ready
Via

Nov 01, 2022
Abstract:Many recent named entity recognition (NER) studies criticize flat NER for its non-overlapping assumption, and switch to investigating nested NER. However, existing nested NER models heavily rely on training data annotated with nested entities, while labeling such data is costly. This study proposes a new subtask, nested-from-flat NER, which corresponds to a realistic application scenario: given data annotated with flat entities only, one may still desire the trained model capable of recognizing nested entities. To address this task, we train span-based models and deliberately ignore the spans nested inside labeled entities, since these spans are possibly unlabeled entities. With nested entities removed from the training data, our model achieves 54.8%, 54.2% and 41.1% F1 scores on the subset of spans within entities on ACE 2004, ACE 2005 and GENIA, respectively. This suggests the effectiveness of our approach and the feasibility of the task. In addition, the model's performance on flat entities is entirely unaffected. We further manually annotate the nested entities in the test set of CoNLL 2003, creating a nested-from-flat NER benchmark. Analysis results show that the main challenges stem from the data and annotation inconsistencies between the flat and nested entities.
Via

Apr 17, 2022
Abstract:As a fundamental natural language processing task and one of core knowledge extraction techniques, named entity recognition (NER) is widely used to extract information from texts for downstream tasks. Nested NER is a branch of NER in which the named entities (NEs) are nested with each other. However, most of the previous studies on nested NER usually apply linear structure to model the nested NEs which are actually accommodated in a hierarchical structure. Thus in order to address this mismatch, this work models the full nested NEs in a sentence as a holistic structure, then we propose a holistic structure parsing algorithm to disclose the entire NEs once for all. Besides, there is no research on applying corpus-level information to NER currently. To make up for the loss of this information, we introduce Point-wise Mutual Information (PMI) and other frequency features from corpus-aware statistics for even better performance by holistic modeling from sentence-level to corpus-level. Experiments show that our model yields promising results on widely-used benchmarks which approach or even achieve state-of-the-art. Further empirical studies show that our proposed corpus-aware features can substantially improve NER domain adaptation, which demonstrates the surprising advantage of our proposed corpus-level holistic structure modeling.
Via

May 23, 2022
Abstract:The RuNNE Shared Task approaches the problem of nested named entity recognition. The annotation schema is designed in such a way, that an entity may partially overlap or even be nested into another entity. This way, the named entity "The Yermolova Theatre" of type "organization" houses another entity "Yermolova" of type "person". We adopt the Russian NEREL dataset for the RuNNE Shared Task. NEREL comprises news texts written in the Russian language and collected from the Wikinews portal. The annotation schema includes 29 entity types. The nestedness of named entities in NEREL reaches up to six levels. The RuNNE Shared Task explores two setups. (i) In the general setup all entities occur more or less with the same frequency. (ii) In the few-shot setup the majority of entity types occur often in the training set. However, some of the entity types are have lower frequency, being thus challenging to recognize. In the test set the frequency of all entity types is even. This paper reports on the results of the RuNNE Shared Task. Overall the shared task has received 156 submissions from nine teams. Half of the submissions outperform a straightforward BERT-based baseline in both setups. This paper overviews the shared task setup and discusses the submitted systems, discovering meaning insights for the problem of nested NER. The links to the evaluation platform and the data from the shared task are available in our github repository: https://github.com/dialogue-evaluation/RuNNE.
* To appear in Dialogue 2022
Via

Oct 19, 2022
Abstract:Named entity recognition is a traditional task in natural language processing. In particular, nested entity recognition receives extensive attention for the widespread existence of the nesting scenario. The latest research migrates the well-established paradigm of set prediction in object detection to cope with entity nesting. However, the manual creation of query vectors, which fail to adapt to the rich semantic information in the context, limits these approaches. An end-to-end entity detection approach with proposer and regressor is presented in this paper to tackle the issues. First, the proposer utilizes the feature pyramid network to generate high-quality entity proposals. Then, the regressor refines the proposals for generating the final prediction. The model adopts encoder-only architecture and thus obtains the advantages of the richness of query semantics, high precision of entity localization, and easiness for model training. Moreover, we introduce the novel spatially modulated attention and progressive refinement for further improvement. Extensive experiments demonstrate that our model achieves advanced performance in flat and nested NER, achieving a new state-of-the-art F1 score of 80.74 on the GENIA dataset and 72.38 on the WeiboNER dataset.
Via

Oct 14, 2021
Abstract:Nested entities are observed in many domains due to their compositionality, which cannot be easily recognized by the widely-used sequence labeling framework. A natural solution is to treat the task as a span classification problem. To increase performance on span representation and classification, it is crucial to effectively integrate all useful information of different formats, which we refer to heterogeneous factors including tokens, labels, boundaries, and related spans. To fuse these heterogeneous factors, we propose a novel triaffine mechanism including triaffine attention and scoring, which interacts with multiple factors in both the stages of representation and classification. Experiments results show that our proposed method achieves the state-of-the-art F1 scores on four nested NER datasets: ACE2004, ACE2005, GENIA, and KBP2017.
Via

Oct 11, 2021
Abstract:Constituency parsing and nested named entity recognition (NER) are typical \textit{nested structured prediction} tasks since they both aim to predict a collection of nested and non-crossing spans. There are many previous studies adapting constituency parsing methods to tackle nested NER. In this work, we propose a novel global pointing mechanism for bottom-up parsing with pointer networks to do both tasks, which needs linear steps to parse. Our method obtain the state-of-the-art performance on PTB among all BERT-based models (96.01 F1 score) and competitive performance on CTB7 in constituency parsing; and comparable performance on three benchmark datasets of nested NER: ACE2004, ACE2005, and GENIA. Our code is publicly available at \url{https://github.com/sustcsonglin/pointer-net-for-nested}
Via

Oct 19, 2022
Abstract:Named entity recognition is a fundamental task in natural language processing, identifying the span and category of entities in unstructured texts. The traditional sequence labeling methodology ignores the nested entities, i.e. entities included in other entity mentions. Many approaches attempt to address this scenario, most of which rely on complex structures or have high computation complexity. The representation learning of the heterogeneous star graph containing text nodes and type nodes is investigated in this paper. In addition, we revise the graph attention mechanism into a hybrid form to address its unreasonableness in specific topologies. The model performs the type-supervised sequence labeling after updating nodes in the graph. The annotation scheme is an extension of the single-layer sequence labeling and is able to cope with the vast majority of nested entities. Extensive experiments on public NER datasets reveal the effectiveness of our model in extracting both flat and nested entities. The method achieved state-of-the-art performance on both flat and nested datasets. The significant improvement in accuracy reflects the superiority of the multi-layer labeling strategy.
Via

Oct 19, 2022
Abstract:Data augmentation techniques have been used to improve the generalization capability of models in the named entity recognition (NER) tasks. Existing augmentation methods either manipulate the words in the original text that require hand-crafted in-domain knowledge, or leverage generative models which solicit dependency order among entities. To alleviate the excessive reliance on the dependency order among entities in existing augmentation paradigms, we develop an entity-to-text instead of text-to-entity based data augmentation method named: EnTDA to decouple the dependencies between entities by adding, deleting, replacing and swapping entities, and adopt these augmented data to bootstrap the generalization ability of the NER model. Furthermore, we introduce a diversity beam search to increase the diversity of the augmented data. Experiments on thirteen NER datasets across three tasks (flat NER, nested NER, and discontinuous NER) and two settings (full data NER and low resource NER) show that EnTDA could consistently outperform the baselines.
* 13 pages, 4 figures, 9 tables
Via

Aug 30, 2022
Abstract:We present an efficient bi-encoder framework for named entity recognition (NER), which applies contrastive learning to map candidate text spans and entity types into the same vector representation space. Prior work predominantly approaches NER as sequence labeling or span classification. We instead frame NER as a metric learning problem that maximizes the similarity between the vector representations of an entity mention and its type. This makes it easy to handle nested and flat NER alike, and can better leverage noisy self-supervision signals. A major challenge to this bi-encoder formulation for NER lies in separating non-entity spans from entity mentions. Instead of explicitly labeling all non-entity spans as the same class Outside (O) as in most prior methods, we introduce a novel dynamic thresholding loss, which is learned in conjunction with the standard contrastive loss. Experiments show that our method performs well in both supervised and distantly supervised settings, for nested and flat NER alike, establishing new state of the art across standard datasets in the general domain (e.g., ACE2004, ACE2005) and high-value verticals such as biomedicine (e.g., GENIA, NCBI, BC5CDR, JNLPBA).
Via
