Information extraction is the process of automatically extracting structured information from unstructured text data.
Explainable artificial intelligence (xAI) has gained significant attention in recent years. Among other things, explainablility for deep neural networks has been a topic of intensive research due to the meteoric rise in prominence of deep neural networks and their "black-box" nature. xAI approaches can be characterized along different dimensions such as their scope (global versus local explanations) or underlying methodologies (statistic-based versus rule-based strategies). Methods generating global explanations aim to provide reasoning process applicable to all possible output classes while local explanation methods focus only on a single, specific class. SHAP (SHapley Additive exPlanations), a well-known statistical technique, identifies important features of a network. Deep neural network rule extraction method constructs IF-THEN rules that link input conditions to a class. Another approach focuses on generating counterfactuals which help explain how small changes to an input can affect the model's predictions. However, these techniques primarily focus on the input-output relationship and thus neglect the structure of the network in explanation generation. In this work, we propose xDNN(ASP), an explanation generation system for deep neural networks that provides global explanations. Given a neural network model and its training data, xDNN(ASP) extracts a logic program under answer set semantics that-in the ideal case-represents the trained model, i.e., answer sets of the extracted program correspond one-to-one to input-output pairs of the network. We demonstrate experimentally, using two synthetic datasets, that not only the extracted logic program maintains a high-level of accuracy in the prediction task, but it also provides valuable information for the understanding of the model such as the importance of features as well as the impact of hidden nodes on the prediction. The latter can be used as a guide for reducing the number of nodes used in hidden layers, i.e., providing a means for optimizing the network.
Understanding where transformer language models encode psychologically meaningful aspects of meaning is essential for both theory and practice. We conduct a systematic layer-wise probing study of 58 psycholinguistic features across 10 transformer models, spanning encoder-only and decoder-only architectures, and compare three embedding extraction methods. We find that apparent localization of meaning is strongly method-dependent: contextualized embeddings yield higher feature-specific selectivity and different layer-wise profiles than isolated embeddings. Across models and methods, final-layer representations are rarely optimal for recovering psycholinguistic information with linear probes. Despite these differences, models exhibit a shared depth ordering of meaning dimensions, with lexical properties peaking earlier and experiential and affective dimensions peaking later. Together, these results show that where meaning "lives" in transformer models reflects an interaction between methodological choices and architectural constraints.
The integration of Large Language Models (LLMs) into biomedical research offers new opportunities for domainspecific reasoning and knowledge representation. However, their performance depends heavily on the semantic quality of training data. In oncology, where precision and interpretability are vital, scalable methods for constructing structured knowledge bases are essential for effective fine-tuning. This study presents a pipeline for developing a lung cancer knowledge base using Open Information Extraction (OpenIE). The process includes: (1) identifying medical concepts with the MeSH thesaurus; (2) filtering open-access PubMed literature with permissive licenses (CC0); (3) extracting (subject, relation, object) triplets using OpenIE method; and (4) enriching triplet sets with Named Entity Recognition (NER) to ensure biomedical relevance. The resulting triplet sets provide a domain-specific, large-scale, and noise-aware resource for fine-tuning LLMs. We evaluated T5 models finetuned on this dataset through Supervised Semantic Fine-Tuning. Comparative assessments with ROUGE and BERTScore show significantly improved performance and semantic coherence, demonstrating the potential of OpenIE-derived resources as scalable, low-cost solutions for enhancing biomedical NLP.
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
Satellites continuously generate massive volumes of data, particularly for Earth observation, including satellite image time series (SITS). However, most deep learning models are designed to process either entire images or complete time series sequences to extract meaningful features for downstream tasks. In this study, we propose a novel multimodal approach that leverages pixel-wise two-dimensional (2D) representations to encode visual property variations from SITS more effectively. Specifically, we generate recurrence plots from pixel-based vegetation index time series (NDVI, EVI, and SAVI) as an alternative to using raw pixel values, creating more informative representations. Additionally, we introduce PIxel-wise Multimodal Contrastive (PIMC), a new multimodal self-supervision approach that produces effective encoders based on two-dimensional pixel time series representations and remote sensing imagery (RSI). To validate our approach, we assess its performance on three downstream tasks: pixel-level forecasting and classification using the PASTIS dataset, and land cover classification on the EuroSAT dataset. Moreover, we compare our results to state-of-the-art (SOTA) methods on all downstream tasks. Our experimental results show that the use of 2D representations significantly enhances feature extraction from SITS, while contrastive learning improves the quality of representations for both pixel time series and RSI. These findings suggest that our multimodal method outperforms existing models in various Earth observation tasks, establishing it as a robust self-supervision framework for processing both SITS and RSI. Code avaliable on
Claims documents are fundamental to healthcare and insurance operations, serving as the basis for reimbursement, auditing, and compliance. However, these documents are typically not born digital; they often exist as scanned PDFs or photographs captured under uncontrolled conditions. Consequently, they exhibit significant content heterogeneity, ranging from typed invoices to handwritten medical reports, as well as linguistic diversity. This challenge is exemplified by operations at Fullerton Health, which handles tens of millions of claims annually across nine markets, including Singapore, the Philippines, Indonesia, Malaysia, Mainland China, Hong Kong, Vietnam, Papua New Guinea, and Cambodia. Such variability, coupled with inconsistent image quality and diverse layouts, poses a significant obstacle to automated parsing and structured information extraction. This paper presents a robust multi-stage pipeline that integrates the multilingual optical character recognition (OCR) engine PaddleOCR, a traditional Logistic Regression classifier, and a compact Vision-Language Model (VLM), Qwen 2.5-VL-7B, to achieve efficient and accurate field extraction from large-scale claims data. The proposed system achieves a document-type classification accuracy of over 95 percent and a field-level extraction accuracy of approximately 87 percent, while maintaining an average processing latency of under 2 seconds per document. Compared to manual processing, which typically requires around 10 minutes per claim, our system delivers a 300x improvement in efficiency. These results demonstrate that combining traditional machine learning models with modern VLMs enables production-grade accuracy and speed for real-world automation. The solution has been successfully deployed in our mobile application and is currently processing tens of thousands of claims weekly from Vietnam and Singapore.
Current video generation models produce high-quality aesthetic videos but often struggle to learn representations of real-world physics dynamics, resulting in artifacts such as unnatural object collisions, inconsistent gravity, and temporal flickering. In this work, we propose PhysVideoGenerator, a proof-of-concept framework that explicitly embeds a learnable physics prior into the video generation process. We introduce a lightweight predictor network, PredictorP, which regresses high-level physical features extracted from a pre-trained Video Joint Embedding Predictive Architecture (V-JEPA 2) directly from noisy diffusion latents. These predicted physics tokens are injected into the temporal attention layers of a DiT-based generator (Latte) via a dedicated cross-attention mechanism. Our primary contribution is demonstrating the technical feasibility of this joint training paradigm: we show that diffusion latents contain sufficient information to recover V-JEPA 2 physical representations, and that multi-task optimization remains stable over training. This report documents the architectural design, technical challenges, and validation of training stability, establishing a foundation for future large-scale evaluation of physics-aware generative models.
Vision-language models (VLMs) have recently shown remarkable performance in navigation and localization tasks by leveraging large-scale pretraining for semantic understanding. However, applying VLMs to 6-DoF endoscopic camera localization presents several challenges: 1) the lack of large-scale, high-quality, densely annotated, and localization-oriented vision-language datasets in real-world medical settings; 2) limited capability for fine-grained pose regression; and 3) high computational latency when extracting temporal features from past frames. To address these issues, we first construct BREATH dataset, the largest in-vivo endoscopic localization dataset to date, collected in the complex human airway. Building on this dataset, we propose BREATH-VL, a hybrid framework that integrates semantic cues from VLMs with geometric information from vision-based registration methods for accurate 6-DoF pose estimation. Our motivation lies in the complementary strengths of both approaches: VLMs offer generalizable semantic understanding, while registration methods provide precise geometric alignment. To further enhance the VLM's ability to capture temporal context, we introduce a lightweight context-learning mechanism that encodes motion history as linguistic prompts, enabling efficient temporal reasoning without expensive video-level computation. Extensive experiments demonstrate that the vision-language module delivers robust semantic localization in challenging surgical scenes. Building on this, our BREATH-VL outperforms state-of-the-art vision-only localization methods in both accuracy and generalization, reducing translational error by 25.5% compared with the best-performing baseline, while achieving competitive computational latency.
Commercial-grade poster design demands the seamless integration of aesthetic appeal with precise, informative content delivery. Current automated poster generation systems face significant limitations, including incomplete design workflows, poor text rendering accuracy, and insufficient flexibility for commercial applications. To address these challenges, we propose PosterVerse, a full-workflow, commercial-grade poster generation method that seamlessly automates the entire design process while delivering high-density and scalable text rendering. PosterVerse replicates professional design through three key stages: (1) blueprint creation using fine-tuned LLMs to extract key design elements from user requirements, (2) graphical background generation via customized diffusion models to create visually appealing imagery, and (3) unified layout-text rendering with an MLLM-powered HTML engine to guarantee high text accuracy and flexible customization. In addition, we introduce PosterDNA, a commercial-grade, HTML-based dataset tailored for training and validating poster design models. To the best of our knowledge, PosterDNA is the first Chinese poster generation dataset to introduce HTML typography files, enabling scalable text rendering and fundamentally solving the challenges of rendering small and high-density text. Experimental results demonstrate that PosterVerse consistently produces commercial-grade posters with appealing visuals, accurate text alignment, and customizable layouts, making it a promising solution for automating commercial poster design. The code and model are available at https://github.com/wuhaer/PosterVerse.
Geo-localization aims to infer the geographic origin of a given signal. In computer vision, geo-localization has served as a demanding benchmark for compositional reasoning and is relevant to public safety. In contrast, progress on audio geo-localization has been constrained by the lack of high-quality audio-location pairs. To address this gap, we introduce AGL1K, the first audio geo-localization benchmark for audio language models (ALMs), spanning 72 countries and territories. To extract reliably localizable samples from a crowd-sourced platform, we propose the Audio Localizability metric that quantifies the informativeness of each recording, yielding 1,444 curated audio clips. Evaluations on 16 ALMs show that ALMs have emerged with audio geo-localization capability. We find that closed-source models substantially outperform open-source models, and that linguistic clues often dominate as a scaffold for prediction. We further analyze ALMs' reasoning traces, regional bias, error causes, and the interpretability of the localizability metric. Overall, AGL1K establishes a benchmark for audio geo-localization and may advance ALMs with better geospatial reasoning capability.