Information extraction is the process of automatically extracting structured information from unstructured text data.
Infographics are widely used to communicate information with a combination of text, icons, and data visualizations, but once exported as images their content is locked into pixels, making updates, localization, and reuse expensive. We describe \textsc{Images2Slides}, an API-based pipeline that converts a static infographic (PNG/JPG) into a native, editable Google Slides slide by extracting a region-level specification with a vision-language model (VLM), mapping pixel geometry into slide coordinates, and recreating elements using the Google Slides batch update API. The system is model-agnostic and supports multiple VLM backends via a common JSON region schema and deterministic postprocessing. On a controlled benchmark of 29 programmatically generated infographic slides with known ground-truth regions, \textsc{Images2Slides} achieves an overall element recovery rate of $0.989\pm0.057$ (text: $0.985\pm0.083$, images: $1.000\pm0.000$), with mean text transcription error $\mathrm{CER}=0.033\pm0.149$ and mean layout fidelity $\mathrm{IoU}=0.364\pm0.161$ for text regions and $0.644\pm0.131$ for image regions. We also highlight practical engineering challenges in reconstruction, including text size calibration and non-uniform backgrounds, and describe failure modes that guide future work.
Most existing CLIP-style medical vision--language pretraining methods rely on global or local alignment with substantial paired data. However, global alignment is easily dominated by non-diagnostic information, while local alignment fails to integrate key diagnostic evidence. As a result, learning reliable diagnostic representations becomes difficult, which limits their applicability in medical scenarios with limited paired data. To address this issue, we propose an LLM-Guided Diagnostic Evidence Alignment method (LGDEA), which shifts the pretraining objective toward evidence-level alignment that is more consistent with the medical diagnostic process. Specifically, we leverage LLMs to extract key diagnostic evidence from radiology reports and construct a shared diagnostic evidence space, enabling evidence-aware cross-modal alignment and allowing LGDEA to effectively exploit abundant unpaired medical images and reports, thereby substantially alleviating the reliance on paired data. Extensive experimental results demonstrate that our method achieves consistent and significant improvements on phrase grounding, image--text retrieval, and zero-shot classification, and even rivals pretraining methods that rely on substantial paired data.
Large Language Models (LLMs) promise to accelerate discovery by reasoning across the expanding scientific landscape. Yet, the challenge is no longer access to information but connecting it in meaningful, domain-spanning ways. In materials science, where innovation demands integrating concepts from molecular chemistry to mechanical performance, this is especially acute. Neither humans nor single-agent LLMs can fully contend with this torrent of information, with the latter often prone to hallucinations. To address this bottleneck, we introduce a multi-agent framework guided by large-scale knowledge graphs to find sustainable substitutes for per- and polyfluoroalkyl substances (PFAS)-chemicals currently under intense regulatory scrutiny. Agents in the framework specialize in problem decomposition, evidence retrieval, design parameter extraction, and graph traversal, uncovering latent connections across distinct knowledge pockets to support hypothesis generation. Ablation studies show that the full multi-agent pipeline outperforms single-shot prompting, underscoring the value of distributed specialization and relational reasoning. We demonstrate that by tailoring graph traversal strategies, the system alternates between exploitative searches focusing on domain-critical outcomes and exploratory searches surfacing emergent cross-connections. Illustrated through the exemplar of biomedical tubing, the framework generates sustainable PFAS-free alternatives that balance tribological performance, thermal stability, chemical resistance, and biocompatibility. This work establishes a framework combining knowledge graphs with multi-agent reasoning to expand the materials design space, showcasing several initial design candidates to demonstrate the approach.
Open research information (ORI) play a central role in shaping how scientific knowledge is produced, disseminated, validated, and reused across the research lifecycle. While the visibility of such ORI infrastructures is often assessed through citation-based metrics, in this study, we present a full-text, natural language processing (NLP) driven scientometric framework to systematically quantify the impact of ORI infrastructures beyond citation counts, using the LXCat platform for low temperature plasma (LTP) research as a representative case study. The modeling of LTPs and interpretation of LTP experiments rely heavily on accurate data, much of which is hosted on LXCat, a community-driven, open-access platform central to the LTP research ecosystem. To investigate the scholarly impact of the LXCat platform over the past decade, we analyzed a curated corpus of full-text research articles citing three foundational LXCat publications. We present a comprehensive pipeline that integrates chemical entity recognition, dataset and solver mention extraction, affiliation based geographic mapping and topic modeling to extract fine-grained patterns of data usage that reflect implicit research priorities, data practices, differential reliance on specific databases, evolving modes of data reuse and coupling within scientific workflows, and thematic evolution. Importantly, our proposed methodology is domain-agnostic and transferable to other ORI contexts, and highlights the utility of NLP in quantifying the role of scientific data infrastructures and offers a data-driven reflection on how open-access platforms like LXCat contribute to shaping research directions. This work presents a scalable scientometric framework that has the potential to support evidence based evaluation of ORI platforms and to inform infrastructure design, governance, sustainability, and policy for future development.
Information Extraction (IE), encompassing Named Entity Recognition (NER), Named Entity Linking (NEL), and Relation Extraction (RE), is critical for transforming the rapidly growing volume of scientific publications into structured, actionable knowledge. This need is especially evident in fast-evolving biomedical fields such as the gut-brain axis, where research investigates complex interactions between the gut microbiota and brain-related disorders. Existing biomedical IE benchmarks, however, are often narrow in scope and rely heavily on distantly supervised or automatically generated annotations, limiting their utility for advancing robust IE methods. We introduce GutBrainIE, a benchmark based on more than 1,600 PubMed abstracts, manually annotated by biomedical and terminological experts with fine-grained entities, concept-level links, and relations. While grounded in the gut-brain axis, the benchmark's rich schema, multiple tasks, and combination of highly curated and weakly supervised data make it broadly applicable to the development and evaluation of biomedical IE systems across domains.
We study multi-task reinforcement learning (RL), a setting in which an agent learns a single, universal policy capable of generalising to arbitrary, possibly unseen tasks. We consider tasks specified as linear temporal logic (LTL) formulae, which are commonly used in formal methods to specify properties of systems, and have recently been successfully adopted in RL. In this setting, we present a novel task embedding technique leveraging a new generation of semantic LTL-to-automata translations, originally developed for temporal synthesis. The resulting semantically labelled automata contain rich, structured information in each state that allow us to (i) compute the automaton efficiently on-the-fly, (ii) extract expressive task embeddings used to condition the policy, and (iii) naturally support full LTL. Experimental results in a variety of domains demonstrate that our approach achieves state-of-the-art performance and is able to scale to complex specifications where existing methods fail.
``Phoneme Hallucinations (PH)'' commonly occur in low-bitrate DNN-based codecs. It is the generative decoder's attempt to synthesize plausible outputs from excessively compressed tokens missing some semantic information. In this work, we propose language model-driven losses (LM loss) and show they may alleviate PHs better than a semantic distillation (SD) objective in very-low-bitrate settings. The proposed LM losses build upon language models pretrained to associate speech with text. When ground-truth transcripts are unavailable, we propose to modify a popular automatic speech recognition (ASR) model, Whisper, to compare the decoded utterance against the ASR-inferred transcriptions of the input speech. Else, we propose to use the timed-text regularizer (TTR) to compare WavLM representations of the decoded utterance against BERT representations of the ground-truth transcriptions. We test and compare LM losses against an SD objective, using a reference codec whose three-stage training regimen was designed after several popular codecs. Subjective and objective evaluations conclude that LM losses may provide stronger guidance to extract semantic information from self-supervised speech representations, boosting human-perceived semantic adherence while preserving overall output quality. Demo samples, code, and checkpoints are available online.
Electrocardiogram (ECG) digitization-converting paper-based or scanned ECG images back into time-series signals-is critical for leveraging decades of legacy clinical data in modern deep learning applications. However, progress has been hindered by the lack of large-scale datasets providing both ECG images and their corresponding ground truth signals with comprehensive annotations. We introduce PTB-XL-Image-17K, a complete synthetic ECG image dataset comprising 17,271 high-quality 12-lead ECG images generated from the PTB-XL signal database. Our dataset uniquely provides five complementary data types per sample: (1) realistic ECG images with authentic grid patterns and annotations (50% with visible grid, 50% without), (2) pixel-level segmentation masks, (3) ground truth time-series signals, (4) bounding box annotations in YOLO format for both lead regions and lead name labels, and (5) comprehensive metadata including visual parameters and patient information. We present an open-source Python framework enabling customizable dataset generation with controllable parameters including paper speed (25/50 mm/s), voltage scale (5/10 mm/mV), sampling rate (500 Hz), grid appearance (4 colors), and waveform characteristics. The dataset achieves 100% generation success rate with an average processing time of 1.35 seconds per sample. PTB-XL-Image-17K addresses critical gaps in ECG digitization research by providing the first large-scale resource supporting the complete pipeline: lead detection, waveform segmentation, and signal extraction with full ground truth for rigorous evaluation. The dataset, generation framework, and documentation are publicly available at https://github.com/naqchoalimehdi/PTB-XL-Image-17K and https://doi.org/10.5281/zenodo.18197519.
Trust has stood out more than ever in the light of recent innovations. Some examples are advances in artificial intelligence that make machines more and more humanlike, and the introduction of decentralized technologies (e.g. blockchains), which creates new forms of (decentralized) trust. These new developments have the potential to improve the provision of products and services, as well as to contribute to individual and collective well-being. However, their adoption depends largely on trust. In order to build trustworthy systems, along with defining laws, regulations and proper governance models for new forms of trust, it is necessary to properly conceptualize trust, so that it can be understood both by humans and machines. This paper is the culmination of a long-term research program of providing a solid ontological foundation on trust, by creating reference conceptual models to support information modeling, automated reasoning, information integration and semantic interoperability tasks. To address this, a Reference Ontology of Trust (ONTrust) was developed, grounded on the Unified Foundational Ontology and specified in OntoUML, which has been applied in several initiatives, to demonstrate, for example, how it can be used for conceptual modeling and enterprise architecture design, for language evaluation and (re)design, for trust management, for requirements engineering, and for trustworthy artificial intelligence (AI) in the context of affective Human-AI teaming. ONTrust formally characterizes the concept of trust and its different types, describes the different factors that can influence trust, as well as explains how risk emerges from trust relations. To illustrate the working of ONTrust, the ontology is applied to model two case studies extracted from the literature.
Recently, Segment Anything Model (SAM) has demonstrated strong generalizability in various instance segmentation tasks. However, its performance is severely dependent on the quality of manual prompts. In addition, the RGB images that instance segmentation methods normally use inherently lack depth information. As a result, the ability of these methods to perceive spatial structures and delineate object boundaries is hindered. To address these challenges, we propose a Self-prompted Depth-Aware SAM (SPDA-SAM) for instance segmentation. Specifically, we design a Semantic-Spatial Self-prompt Module (SSSPM) which extracts the semantic and spatial prompts from the image encoder and the mask decoder of SAM, respectively. Furthermore, we introduce a Coarse-to-Fine RGB-D Fusion Module (C2FFM), in which the features extracted from a monocular RGB image and the depth map estimated from it are fused. In particular, the structural information in the depth map is used to provide coarse-grained guidance to feature fusion, while local variations in depth are encoded in order to fuse fine-grained feature representations. To our knowledge, SAM has not been explored in such self-prompted and depth-aware manners. Experimental results demonstrate that our SPDA-SAM outperforms its state-of-the-art counterparts across twelve different data sets. These promising results should be due to the guidance of the self-prompts and the compensation for the spatial information loss by the coarse-to-fine RGB-D fusion operation.