


Abstract:The global AI surge demands crowdworkers from diverse languages and cultures. They are pivotal in labeling data for enabling global AI systems. Despite global significance, research has primarily focused on understanding the perspectives and experiences of US and India crowdworkers, leaving a notable gap. To bridge this, we conducted a survey with 100 crowdworkers across 16 Latin American and Caribbean countries. We discovered that these workers exhibited pride and respect for their digital labor, with strong support and admiration from their families. Notably, crowd work was also seen as a stepping stone to financial and professional independence. Surprisingly, despite wanting more connection, these workers also felt isolated from peers and doubtful of others' labor quality. They resisted collaboration and gender-based tools, valuing gender-neutrality. Our work advances HCI understanding of Latin American and Caribbean crowdwork, offering insights for digital resistance tools for the region.




Abstract:Crowdsourcing markets are expanding worldwide, but often feature standardized interfaces that ignore the cultural diversity of their workers, negatively impacting their well-being and productivity. To transform these workplace dynamics, this paper proposes creating culturally-aware workplace tools, specifically designed to adapt to the cultural dimensions of monochronic and polychronic work styles. We illustrate this approach with "CultureFit," a tool that we engineered based on extensive research in Chronemics and culture theories. To study and evaluate our tool in the real world, we conducted a field experiment with 55 workers from 24 different countries. Our field experiment revealed that CultureFit significantly improved the earnings of workers from cultural backgrounds often overlooked in design. Our study is among the pioneering efforts to examine culturally aware digital labor interventions. It also provides access to a dataset with over two million data points on culture and digital work, which can be leveraged for future research in this emerging field. The paper concludes by discussing the importance and future possibilities of incorporating cultural insights into the design of tools for digital labor.
Abstract:AI has revolutionized the processing of various services, including the automatic facial verification of people. Automated approaches have demonstrated their speed and efficiency in verifying a large volume of faces, but they can face challenges when processing content from certain communities, including communities of people of color. This challenge has prompted the adoption of "human-in-the-loop" (HITL) approaches, where human workers collaborate with the AI to minimize errors. However, most HITL approaches do not consider workers' individual characteristics and backgrounds. This paper proposes a new approach, called Inclusive Portraits (IP), that connects with social theories around race to design a racially-aware human-in-the-loop system. Our experiments have provided evidence that incorporating race into human-in-the-loop (HITL) systems for facial verification can significantly enhance performance, especially for services delivered to people of color. Our findings also highlight the importance of considering individual worker characteristics in the design of HITL systems, rather than treating workers as a homogenous group. Our research has significant design implications for developing AI-enhanced services that are more inclusive and equitable.
Abstract:The limited information (data voids) on political topics relevant to underrepresented communities has facilitated the spread of disinformation. Independent journalists who combat disinformation in underrepresented communities have reported feeling overwhelmed because they lack the tools necessary to make sense of the information they monitor and address the data voids. In this paper, we present a system to identify and address political data voids within underrepresented communities. Armed with an interview study, indicating that the independent news media has the potential to address them, we designed an intelligent collaborative system, called Datavoidant. Datavoidant uses state-of-the-art machine learning models and introduces a novel design space to provide independent journalists with a collective understanding of data voids to facilitate generating content to cover the voids. We performed a user interface evaluation with independent news media journalists (N=22). These journalists reported that Datavoidant's features allowed them to more rapidly while easily having a sense of what was taking place in the information ecosystem to address the data voids. They also reported feeling more confident about the content they created and the unique perspectives they had proposed to cover the voids. We conclude by discussing how Datavoidant enables a new design space wherein individuals can collaborate to make sense of their information ecosystem and actively devise strategies to prevent disinformation.




Abstract:Our study presents a new tool, Reputation Agent, to promote fairer reviews from requesters (employers or customers) on gig markets. Unfair reviews, created when requesters consider factors outside of a worker's control, are known to plague gig workers and can result in lost job opportunities and even termination from the marketplace. Our tool leverages machine learning to implement an intelligent interface that: (1) uses deep learning to automatically detect when an individual has included unfair factors into her review (factors outside the worker's control per the policies of the market); and (2) prompts the individual to reconsider her review if she has incorporated unfair factors. To study the effectiveness of Reputation Agent, we conducted a controlled experiment over different gig markets. Our experiment illustrates that across markets, Reputation Agent, in contrast with traditional approaches, motivates requesters to review gig workers' performance more fairly. We discuss how tools that bring more transparency to employers about the policies of a gig market can help build empathy thus resulting in reasoned discussions around potential injustices towards workers generated by these interfaces. Our vision is that with tools that promote truth and transparency we can bring fairer treatment to gig workers.