Abstract:Retrieval-Augmented Generation (RAG) systems require corpora that are both structurally clean and semantically coherent. BRIGHT is a recent and influential benchmark designed to evaluate complex multi-hop retrieval across diverse, high-reasoning domains. However, its practical effectiveness is limited by common web-crawled artifacts - such as content redundancy and semantic discontinuity - that impair retrieval accuracy and downstream reasoning. Notably, we find that such issues are concentrated in seven StackExchange-derived subdomains, while other domains (e.g., Coding and Theorem-based content) remain relatively clean. In this study, we present MARCUS, a multi-agent pipeline that leverages large language models (LLMs) to systematically clean and re-chunk BRIGHT into a higher-quality corpus: BRIGHT-Plus. MARCUS applies dedicated agents for structural noise removal and semantic segmentation, preserving answer-bearing spans while improving contextual integrity. Experimental evaluations demonstrate that BRIGHT-Plus yields consistent and significant improvements in both retrieval accuracy and multi-hop reasoning across a diverse set of retrievers. We release both the BRIGHT-Plus corpus and the MARCUS pipeline to support future research on robust, reasoning-centric retrieval.
Abstract:Large Language Models (LLMs) have shown remarkable reasoning capabilities through Reinforcement Learning with Verifiable Rewards (RLVR) methods. However, a key limitation of existing approaches is that rewards defined at the full trajectory level provide insufficient guidance for optimizing the intermediate steps of a reasoning process. To address this, we introduce \textbf{\name}, a novel method that estimates the mathematical expectations of rewards at various reasoning steps using tree sampling. Unlike prior methods that rely on a separate step reward model, \name directly estimates these rewards through this sampling process. Building on the group-relative reward training mechanism of GRPO, \name innovatively computes rewards based on step-level groups generated during tree sampling. This advancement allows \name to produce fine-grained and dense reward signals, significantly enhancing the learning process and overall performance of LLMs. Experimental results demonstrate that our \name algorithm substantially improves the average Pass@1 accuracy of Qwen-2.5-Math on test benchmarks, increasing it from 19.0\% to 35.5\%. Furthermore, \name significantly outperforms GRPO by 2.9\% in performance while simultaneously reducing the average response length by 18.1\%, showcasing its effectiveness and efficiency. Our code will be available at \href{https://github.com/yangzhch6/TreeRPO}{https://github.com/yangzhch6/TreeRPO}.
Abstract:Although dynamic scene reconstruction has long been a fundamental challenge in 3D vision, the recent emergence of 3D Gaussian Splatting (3DGS) offers a promising direction by enabling high-quality, real-time rendering through explicit Gaussian primitives. However, existing 3DGS-based methods for dynamic reconstruction often suffer from \textit{spatio-temporal incoherence} during initialization, where canonical Gaussians are constructed by aggregating observations from multiple frames without temporal distinction. This results in spatio-temporally entangled representations, making it difficult to model dynamic motion accurately. To overcome this limitation, we propose \textbf{STDR} (Spatio-Temporal Decoupling for Real-time rendering), a plug-and-play module that learns spatio-temporal probability distributions for each Gaussian. STDR introduces a spatio-temporal mask, a separated deformation field, and a consistency regularization to jointly disentangle spatial and temporal patterns. Extensive experiments demonstrate that incorporating our module into existing 3DGS-based dynamic scene reconstruction frameworks leads to notable improvements in both reconstruction quality and spatio-temporal consistency across synthetic and real-world benchmarks.
Abstract:Large reasoning models (LRMs) have significantly advanced performance on complex tasks, yet their tendency to overthink introduces inefficiencies. This study investigates the internal mechanisms of reinforcement learning (RL)-trained LRMs when prompted to save thinking, revealing three distinct thinking modes: no thinking (NT), explicit thinking (ET), and implicit thinking (IT). Through comprehensive analysis of confidence in thinking termination, attention from thinking to generation, and attentional focus on input sections, we uncover key factors influencing the reasoning behaviors. We further find that NT reduces output length at the cost of accuracy, while ET and IT maintain accuracy with reduced response length. Our findings expose fundamental inconsistencies in RL-optimized LRMs, necessitating adaptive improvements for reliable efficiency.
Abstract:Recent advances in test-time scaling have enabled Large Language Models (LLMs) to display sophisticated reasoning abilities via extended Chain-of-Thought (CoT) generation. Despite their potential, these Reasoning LLMs (RLMs) often demonstrate counterintuitive and unstable behaviors, such as performance degradation under few-shot prompting, that challenge our current understanding of RLMs. In this work, we introduce a unified graph-based analytical framework for better modeling the reasoning processes of RLMs. Our method first clusters long, verbose CoT outputs into semantically coherent reasoning steps, then constructs directed reasoning graphs to capture contextual and logical dependencies among these steps. Through comprehensive analysis across models and prompting regimes, we reveal that structural properties, such as exploration density, branching, and convergence ratios, strongly correlate with reasoning accuracy. Our findings demonstrate how prompting strategies substantially reshape the internal reasoning structure of RLMs, directly affecting task outcomes. The proposed framework not only enables quantitative evaluation of reasoning quality beyond conventional metrics but also provides practical insights for prompt engineering and the cognitive analysis of LLMs. Code and resources will be released to facilitate future research in this direction.
Abstract:While reasoning large language models (LLMs) demonstrate remarkable performance across various tasks, they also contain notable security vulnerabilities. Recent research has uncovered a "thinking-stopped" vulnerability in DeepSeek-R1, where model-generated reasoning tokens can forcibly interrupt the inference process, resulting in empty responses that compromise LLM-integrated applications. However, existing methods triggering this vulnerability require complex mathematical word problems with long prompts--even exceeding 5,000 tokens. To reduce the token cost and formally define this vulnerability, we propose a novel prompt injection attack named "Reasoning Interruption Attack", based on adaptive token compression. We demonstrate that simple standalone arithmetic tasks can effectively trigger this vulnerability, and the prompts based on such tasks exhibit simpler logical structures than mathematical word problems. We develop a systematic approach to efficiently collect attack prompts and an adaptive token compression framework that utilizes LLMs to automatically compress these prompts. Experiments show our compression framework significantly reduces prompt length while maintaining effective attack capabilities. We further investigate the attack's performance via output prefix and analyze the underlying causes of the vulnerability, providing valuable insights for improving security in reasoning LLMs.
Abstract:Large Language Models (LLMs) have made remarkable breakthroughs in reasoning, yet continue to struggle with hallucinations, logical errors, and inability to self-correct during complex multi-step tasks. Current approaches like chain-of-thought prompting offer limited reasoning capabilities that fail when precise step validation is required. We propose Environment Augmented Generation (EAG), a framework that enhances LLM reasoning through: (1) real-time environmental feedback validating each reasoning step, (2) dynamic branch exploration for investigating alternative solution paths when faced with errors, and (3) experience-based learning from successful reasoning trajectories. Unlike existing methods, EAG enables deliberate backtracking and strategic replanning through tight integration of execution feedback with branching exploration. Our a1-32B model achieves state-of-the-art performance among similar-sized models across all benchmarks, matching larger models like o1 on competition mathematics while outperforming comparable models by up to 24.4 percentage points. Analysis reveals EAG's distinctive scaling pattern: initial token investment in environment interaction yields substantial long-term performance dividends, with advantages amplifying proportionally to task complexity. EAG's theoretical framework demonstrates how environment interactivity and systematic branch exploration together establish a new paradigm for reliable machine reasoning, particularly for problems requiring precise multi-step calculation and logical verification.
Abstract:In this work, we propose a novel particle-based variational inference (ParVI) method that accelerates the EVI-Im. Inspired by energy quadratization (EQ) and operator splitting techniques for gradient flows, our approach efficiently drives particles towards the target distribution. Unlike EVI-Im, which employs the implicit Euler method to solve variational-preserving particle dynamics for minimizing the KL divergence, derived using a "discretize-then-variational" approach, the proposed algorithm avoids repeated evaluation of inter-particle interaction terms, significantly reducing computational cost. The framework is also extensible to other gradient-based sampling techniques. Through several numerical experiments, we demonstrate that our method outperforms existing ParVI approaches in efficiency, robustness, and accuracy.
Abstract:Vision-language models (VLMs) have advanced rapidly in processing multimodal information, but their ability to reconcile conflicting signals across modalities remains underexplored. This work investigates how VLMs process ASCII art, a unique medium where textual elements collectively form visual patterns, potentially creating semantic-visual conflicts. We introduce a novel evaluation framework that systematically challenges five state-of-the-art models (including GPT-4o, Claude, and Gemini) using adversarial ASCII art, where character-level semantics deliberately contradict global visual patterns. Our experiments reveal a strong text-priority bias: VLMs consistently prioritize textual information over visual patterns, with visual recognition ability declining dramatically as semantic complexity increases. Various mitigation attempts through visual parameter tuning and prompt engineering yielded only modest improvements, suggesting that this limitation requires architectural-level solutions. These findings uncover fundamental flaws in how current VLMs integrate multimodal information, providing important guidance for future model development while highlighting significant implications for content moderation systems vulnerable to adversarial examples.
Abstract:Visual Language Models (VLMs) have become foundational models for document understanding tasks, widely used in the processing of complex multimodal documents across domains such as finance, law, and academia. However, documents often contain noise-like information, such as watermarks, which inevitably leads us to inquire: \emph{Do watermarks degrade the performance of VLMs in document understanding?} To address this, we propose a novel evaluation framework to investigate the effect of visible watermarks on VLMs performance. We takes into account various factors, including different types of document data, the positions of watermarks within documents and variations in watermark content. Our experimental results reveal that VLMs performance can be significantly compromised by watermarks, with performance drop rates reaching up to 36\%. We discover that \emph{scattered} watermarks cause stronger interference than centralized ones, and that \emph{semantic contents} in watermarks creates greater disruption than simple visual occlusion. Through attention mechanism analysis and embedding similarity examination, we find that the performance drops are mainly attributed to that watermarks 1) force widespread attention redistribution, and 2) alter semantic representation in the embedding space. Our research not only highlights significant challenges in deploying VLMs for document understanding, but also provides insights towards developing robust inference mechanisms on watermarked documents.