Abstract:Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to enhance the factuality of Large Language Models (LLMs). However, existing RAG systems often suffer from an unfaithfulness issue, where the model's response contradicts evidence from the retrieved context. Existing approaches to improving contextual faithfulness largely rely on external interventions, such as prompt engineering, decoding constraints, or reward-based fine-tuning. These works treat the LLM as a black box and overlook a crucial question: how does the LLM internally integrate retrieved evidence with its parametric memory, particularly under knowledge conflicts? To address this gap, we conduct a probing-based analysis of hidden-state representations in LLMs and observe three findings: knowledge integration occurs hierarchically, conflicts manifest as latent signals at the sentence level, and irrelevant context is often amplified when aligned with parametric knowledge. Building on these findings, we propose CLEAR (Conflict-Localized and Enhanced Attention for RAG), a framework that (i) decomposes context into fine-grained sentence-level knowledge, (ii) employs hidden-state probing to localize conflicting knowledge, and (iii) introduces conflict-aware fine-tuning to guide the model to accurately integrate retrieved evidence. Extensive experiments across three benchmarks demonstrate that CLEAR substantially improves both accuracy and contextual faithfulness, consistently outperforming strong baselines under diverse conflict conditions. The related resources are available at https://github.com/LinfengGao/CLEAR.
Abstract:The advancement of large language models (LLMs) has catalyzed a paradigm shift from code generation assistance to autonomous coding agents, enabling a novel development methodology termed "Vibe Coding" where developers validate AI-generated implementations through outcome observation rather than line-by-line code comprehension. Despite its transformative potential, the effectiveness of this emergent paradigm remains under-explored, with empirical evidence revealing unexpected productivity losses and fundamental challenges in human-AI collaboration. To address this gap, this survey provides the first comprehensive and systematic review of Vibe Coding with large language models, establishing both theoretical foundations and practical frameworks for this transformative development approach. Drawing from systematic analysis of over 1000 research papers, we survey the entire vibe coding ecosystem, examining critical infrastructure components including LLMs for coding, LLM-based coding agent, development environment of coding agent, and feedback mechanisms. We first introduce Vibe Coding as a formal discipline by formalizing it through a Constrained Markov Decision Process that captures the dynamic triadic relationship among human developers, software projects, and coding agents. Building upon this theoretical foundation, we then synthesize existing practices into five distinct development models: Unconstrained Automation, Iterative Conversational Collaboration, Planning-Driven, Test-Driven, and Context-Enhanced Models, thus providing the first comprehensive taxonomy in this domain. Critically, our analysis reveals that successful Vibe Coding depends not merely on agent capabilities but on systematic context engineering, well-established development environments, and human-agent collaborative development models.
Abstract:The performance of Large Language Models (LLMs) is fundamentally determined by the contextual information provided during inference. This survey introduces Context Engineering, a formal discipline that transcends simple prompt design to encompass the systematic optimization of information payloads for LLMs. We present a comprehensive taxonomy decomposing Context Engineering into its foundational components and the sophisticated implementations that integrate them into intelligent systems. We first examine the foundational components: context retrieval and generation, context processing and context management. We then explore how these components are architecturally integrated to create sophisticated system implementations: retrieval-augmented generation (RAG), memory systems and tool-integrated reasoning, and multi-agent systems. Through this systematic analysis of over 1300 research papers, our survey not only establishes a technical roadmap for the field but also reveals a critical research gap: a fundamental asymmetry exists between model capabilities. While current models, augmented by advanced context engineering, demonstrate remarkable proficiency in understanding complex contexts, they exhibit pronounced limitations in generating equally sophisticated, long-form outputs. Addressing this gap is a defining priority for future research. Ultimately, this survey provides a unified framework for both researchers and engineers advancing context-aware AI.
Abstract:Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating their parametric knowledge with external retrieved content. However, knowledge conflicts caused by internal inconsistencies or noisy retrieved content can severely undermine the generation reliability of RAG systems.In this work, we argue that LLMs should rethink all evidence, including both retrieved content and internal knowledge, before generating responses.We propose CARE-RAG (Conflict-Aware and Reliable Evidence for RAG), a novel framework that improves trustworthiness through Conflict-Driven Summarization of all available evidence.CARE-RAG first derives parameter-aware evidence by comparing parameter records to identify diverse internal perspectives. It then refines retrieved evidences to produce context-aware evidence, removing irrelevant or misleading content. To detect and summarize conflicts, we distill a 3B LLaMA3.2 model to perform conflict-driven summarization, enabling reliable synthesis across multiple sources.To further ensure evaluation integrity, we introduce a QA Repair step to correct outdated or ambiguous benchmark answers.Experiments on revised QA datasets with retrieval data show that CARE-RAG consistently outperforms strong RAG baselines, especially in scenarios with noisy or conflicting evidence.
Abstract:Large Language Models (LLMs) have made remarkable breakthroughs in reasoning, yet continue to struggle with hallucinations, logical errors, and inability to self-correct during complex multi-step tasks. Current approaches like chain-of-thought prompting offer limited reasoning capabilities that fail when precise step validation is required. We propose Environment Augmented Generation (EAG), a framework that enhances LLM reasoning through: (1) real-time environmental feedback validating each reasoning step, (2) dynamic branch exploration for investigating alternative solution paths when faced with errors, and (3) experience-based learning from successful reasoning trajectories. Unlike existing methods, EAG enables deliberate backtracking and strategic replanning through tight integration of execution feedback with branching exploration. Our a1-32B model achieves state-of-the-art performance among similar-sized models across all benchmarks, matching larger models like o1 on competition mathematics while outperforming comparable models by up to 24.4 percentage points. Analysis reveals EAG's distinctive scaling pattern: initial token investment in environment interaction yields substantial long-term performance dividends, with advantages amplifying proportionally to task complexity. EAG's theoretical framework demonstrates how environment interactivity and systematic branch exploration together establish a new paradigm for reliable machine reasoning, particularly for problems requiring precise multi-step calculation and logical verification.
Abstract:Recent advances in Large Language Models (LLMs) have introduced Reasoning Large Language Models (RLLMs), which employ extended thinking processes with reflection and self-correction capabilities, demonstrating the effectiveness of test-time scaling. RLLMs exhibit innate Chain-of-Thought (CoT) reasoning capability obtained from training, leading to a natural question: "Is CoT prompting, a popular In-Context Learning (ICL) method for chat LLMs, necessary to enhance the reasoning capability of RLLMs?" In this work, we present the first comprehensive analysis of the impacts of Zero-shot CoT and Few-shot CoT on RLLMs across mathematical reasoning tasks. We examine models ranging from 1.5B to 32B parameters, finding that contrary to concerns, CoT prompting significantly enhances RLLMs' performance in most scenarios. Our results reveal distinct patterns: large-capacity models show minimal improvement on simple tasks but substantial gains on complex problems, while smaller models exhibit the opposite behavior. Further analysis demonstrates that CoT prompting effectively controls the distribution of the numbers of thinking tokens and reasoning steps, reducing excessive reflections by approximately 90% in some cases. Moreover, attention logits analysis reveals the RLLMs' overfitting to reflection-related words, which is mitigated by external CoT guidance. Notably, our experiments indicate that for RLLMs, one-shot CoT consistently yields superior performance compared to Few-shot CoT approaches. Our findings provide important insights for optimizing RLLMs' performance through appropriate prompting strategies.
Abstract:Retrieval-Augmented Generation (RAG) mitigates hallucinations in Large Language Models (LLMs) by integrating external knowledge. However, conflicts between parametric knowledge and retrieved context pose challenges, particularly when retrieved information is unreliable or the model's internal knowledge is outdated. In such cases, LLMs struggle to determine whether to rely more on their own parameters or the conflicted context. To address this, we propose **CK-PLUG**, a plug-and-play method for controlling LLMs' reliance on parametric and contextual knowledge. We introduce a novel knowledge consistency metric, Confidence Gain, which detects knowledge conflicts by measuring entropy shifts in token probability distributions after context insertion. CK-PLUG then enables fine-grained control over knowledge preference by adjusting the probability distribution of tokens with negative confidence gain through a single tuning parameter. Experiments demonstrate CK-PLUG's ability to significantly regulate knowledge reliance in counterfactual RAG scenarios while maintaining generation fluency and knowledge accuracy. For instance, on Llama3-8B, memory recall (MR) of RAG response can be adjusted within a broad range (9.9%-71.9%), compared to the baseline of 42.1%. Moreover, CK-PLUG supports adaptive control based on the model's confidence in both internal and external knowledge, achieving consistent performance improvements across various general RAG tasks. Our code is available at: $\href{https://github.com/byronBBL/CK-PLUG}{\text{this https URL}}$.
Abstract:Reliable responses from large language models (LLMs) require adherence to user instructions and retrieved information. While alignment techniques help LLMs align with human intentions and values, improving context-faithfulness through alignment remains underexplored. To address this, we propose $\textbf{Context-DPO}$, the first alignment method specifically designed to enhance LLMs' context-faithfulness. We introduce $\textbf{ConFiQA}$, a benchmark that simulates Retrieval-Augmented Generation (RAG) scenarios with knowledge conflicts to evaluate context-faithfulness. By leveraging faithful and stubborn responses to questions with provided context from ConFiQA, our Context-DPO aligns LLMs through direct preference optimization. Extensive experiments demonstrate that our Context-DPO significantly improves context-faithfulness, achieving 35% to 280% improvements on popular open-source models. Further analysis demonstrates that Context-DPO preserves LLMs' generative capabilities while providing interpretable insights into context utilization. Our code and data are released at https://github.com/byronBBL/Context-DPO
Abstract:As Large Language Models (LLMs) grow increasingly powerful, ensuring their safety and alignment with human values remains a critical challenge. Ideally, LLMs should provide informative responses while avoiding the disclosure of harmful or sensitive information. However, current alignment approaches, which rely heavily on refusal strategies, such as training models to completely reject harmful prompts or applying coarse filters are limited by their binary nature. These methods either fully deny access to information or grant it without sufficient nuance, leading to overly cautious responses or failures to detect subtle harmful content. For example, LLMs may refuse to provide basic, public information about medication due to misuse concerns. Moreover, these refusal-based methods struggle to handle mixed-content scenarios and lack the ability to adapt to context-dependent sensitivities, which can result in over-censorship of benign content. To overcome these challenges, we introduce HiddenGuard, a novel framework for fine-grained, safe generation in LLMs. HiddenGuard incorporates Prism (rePresentation Router for In-Stream Moderation), which operates alongside the LLM to enable real-time, token-level detection and redaction of harmful content by leveraging intermediate hidden states. This fine-grained approach allows for more nuanced, context-aware moderation, enabling the model to generate informative responses while selectively redacting or replacing sensitive information, rather than outright refusal. We also contribute a comprehensive dataset with token-level fine-grained annotations of potentially harmful information across diverse contexts. Our experiments demonstrate that HiddenGuard achieves over 90% in F1 score for detecting and redacting harmful content while preserving the overall utility and informativeness of the model's responses.
Abstract:As the modern tool of choice for question answering, large language models (LLMs) are expected to deliver answers with up-to-date knowledge. To achieve such ideal question-answering systems, locating and then editing outdated knowledge in the natural language outputs is a general target of popular knowledge editing methods. However, this target is challenging, as both identifying which tokens to edit in the reasoning steps and ensuring the coherence of the revised reasoning chain are difficult tasks. We argue that these challenges stem from the unstructured nature of natural language outputs. To address the above challenges, we propose $\textbf{Stru}$ctural $\textbf{Edit}$ing ($\textbf{StruEdit}$), an improved baseline for knowledge editing. We first prompt LLMs to produce structured outputs consisting of reasoning triplets. Then, StruEdit removes any potentially outdated knowledge and efficiently refills the structured outputs with up-to-date information in a single step. Experimental results show that StruEdit consistently delivers the highest accuracy with lowest latency compared with other knowledge editing methods.