Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
This study develops a robust machine learning framework for one-step-ahead forecasting of daily log-returns in the Nepal Stock Exchange (NEPSE) Index using the XGBoost regressor. A comprehensive feature set is engineered, including lagged log-returns (up to 30 days) and established technical indicators such as short- and medium-term rolling volatility measures and the 14-period Relative Strength Index. Hyperparameter optimization is performed using Optuna with time-series cross-validation on the initial training segment. Out-of-sample performance is rigorously assessed via walk-forward validation under both expanding and fixed-length rolling window schemes across multiple lag configurations, simulating real-world deployment and avoiding lookahead bias. Predictive accuracy is evaluated using root mean squared error, mean absolute error, coefficient of determination (R-squared), and directional accuracy on both log-returns and reconstructed closing prices. Empirical results show that the optimal configuration, an expanding window with 20 lags, outperforms tuned ARIMA and Ridge regression benchmarks, achieving the lowest log-return RMSE (0.013450) and MAE (0.009814) alongside a directional accuracy of 65.15%. While the R-squared remains modest, consistent with the noisy nature of financial returns, primary emphasis is placed on relative error reduction and directional prediction. Feature importance analysis and visual inspection further enhance interpretability. These findings demonstrate the effectiveness of gradient boosting ensembles in modeling nonlinear dynamics in volatile emerging market time series and establish a reproducible benchmark for NEPSE Index forecasting.
Multivariate Time-Series (MTS) clustering is crucial for signal processing and data analysis. Although deep learning approaches, particularly those leveraging Contrastive Learning (CL), are prominent for MTS representation, existing CL-based models face two key limitations: 1) neglecting clustering information during positive/negative sample pair construction, and 2) introducing unreasonable inductive biases, e.g., destroying time dependence and periodicity through augmentation strategies, compromising representation quality. This paper, therefore, proposes a Temporal-Frequency Enhanced Contrastive (TFEC) learning framework. To preserve temporal structure while generating low-distortion representations, a temporal-frequency Co-EnHancement (CoEH) mechanism is introduced. Accordingly, a synergistic dual-path representation and cluster distribution learning framework is designed to jointly optimize cluster structure and representation fidelity. Experiments on six real-world benchmark datasets demonstrate TFEC's superiority, achieving 4.48% average NMI gains over SOTA methods, with ablation studies validating the design. The code of the paper is available at: https://github.com/yueliangy/TFEC.
Supply chain forecasting models degrade over time as real-world conditions change. Promotions shift, consumer preferences evolve, and supply disruptions alter demand patterns, causing what is known as concept drift. This silent degradation leads to stockouts or excess inventory without triggering any system warnings. Current industry practice relies on manual monitoring and scheduled retraining every 3-6 months, which wastes computational resources during stable periods while missing rapid drift events. Existing academic methods focus narrowly on drift detection without addressing diagnosis or remediation, and they ignore the hierarchical structure inherent in supply chain data. What retailers need is an end-to-end system that detects drift early, explains its root causes, and automatically corrects affected models. We propose DriftGuard, a five-module framework that addresses the complete drift lifecycle. The system combines an ensemble of four complementary detection methods, namely error-based monitoring, statistical tests, autoencoder anomaly detection, and Cumulative Sum (CUSUM) change-point analysis, with hierarchical propagation analysis to identify exactly where drift occurs across product lines. Once detected, Shapley Additive Explanations (SHAP) analysis diagnoses the root causes, and a cost-aware retraining strategy selectively updates only the most affected models. Evaluated on over 30,000 time series from the M5 retail dataset, DriftGuard achieves 97.8% detection recall within 4.2 days and delivers up to 417 return on investment through targeted remediation.
We analyze initialization dynamics for LDLT-based $\mathcal{L}$-Lipschitz layers by deriving the exact marginal output variance when the underlying parameter matrix $W_0\in \mathbb{R}^{m\times n}$ is initialized with IID Gaussian entries $\mathcal{N}(0,σ^2)$. The Wishart distribution, $S=W_0W_0^\top\sim\mathcal{W}_m(n,σ^2 \boldsymbol{I}_m)$, used for computing the output marginal variance is derived in closed form using expectations of zonal polynomials via James' theorem and a Laplace-integral expansion of $(α\boldsymbol{I}_m+S)^{-1}$. We develop an Isserlis/Wick-based combinatorial expansion for $\operatorname{\mathbb{E}}\left[\operatorname{tr}(S^k)\right]$ and provide explicit truncated moments up to $k=10$, which yield accurate series approximations for small-to-moderate $σ^2$. Monte Carlo experiments confirm the theoretical estimates. Furthermore, empirical analysis was performed to quantify that, using current He or Kaiming initialization with scaling $1/\sqrt{n}$, the output variance is $0.41$, whereas the new parameterization with $10/ \sqrt{n}$ for $α=1$ results in an output variance of $0.9$. The findings clarify why deep $\mathcal{L}$-Lipschitz networks suffer rapid information loss at initialization and offer practical prescriptions for choosing initialization hyperparameters to mitigate this effect. However, using the Higgs boson classification dataset, a hyperparameter sweep over optimizers, initialization scale, and depth was conducted to validate the results on real-world data, showing that although the derivation ensures variance preservation, empirical results indicate He initialization still performs better.
We introduce DT-ICU, a multimodal digital twin framework for continuous risk estimation in intensive care. DT-ICU integrates variable-length clinical time series with static patient information in a unified multitask architecture, enabling predictions to be updated as new observations accumulate over the ICU stay. We evaluate DT-ICU on the large, publicly available MIMIC-IV dataset, where it consistently outperforms established baseline models under different evaluation settings. Our test-length analysis shows that meaningful discrimination is achieved shortly after admission, while longer observation windows further improve the ranking of high-risk patients in highly imbalanced cohorts. To examine how the model leverages heterogeneous data sources, we perform systematic modality ablations, revealing that the model learnt a reasonable structured reliance on interventions, physiological response observations, and contextual information. These analyses provide interpretable insights into how multimodal signals are combined and how trade-offs between sensitivity and precision emerge. Together, these results demonstrate that DT-ICU delivers accurate, temporally robust, and interpretable predictions, supporting its potential as a practical digital twin framework for continuous patient monitoring in critical care. The source code and trained model weights for DT-ICU are publicly available at https://github.com/GUO-W/DT-ICU-release.
Deep learning models, particularly recurrent neural networks and their variants, such as long short-term memory, have significantly advanced time series data analysis. These models capture complex, sequential patterns in time series, enabling real-time assessments. However, their high computational complexity and large model sizes pose challenges for deployment in resource-constrained environments, such as wearable devices and edge computing platforms. Knowledge Distillation (KD) offers a solution by transferring knowledge from a large, complex model (teacher) to a smaller, more efficient model (student), thereby retaining high performance while reducing computational demands. Current KD methods, originally designed for computer vision tasks, neglect the unique temporal dependencies and memory retention characteristics of time series models. To this end, we propose a novel KD framework termed Memory-Discrepancy Knowledge Distillation (MemKD). MemKD leverages a specialized loss function to capture memory retention discrepancies between the teacher and student models across subsequences within time series data, ensuring that the student model effectively mimics the teacher model's behaviour. This approach facilitates the development of compact, high-performing recurrent neural networks suitable for real-time, time series analysis tasks. Our extensive experiments demonstrate that MemKD significantly outperforms state-of-the-art KD methods. It reduces parameter size and memory usage by approximately 500 times while maintaining comparable performance to the teacher model.
Knowledge distillation has proven effective for model compression by transferring knowledge from a larger network called the teacher to a smaller network called the student. Current knowledge distillation in time series is predominantly based on logit and feature aligning techniques originally developed for computer vision tasks. These methods do not explicitly account for temporal data and fall short in two key aspects. First, the mechanisms by which the transferred knowledge helps the student model learning process remain unclear due to uninterpretability of logits and features. Second, these methods transfer only limited knowledge, primarily replicating the teacher predictive accuracy. As a result, student models often produce predictive distributions that differ significantly from those of their teachers, hindering their safe substitution for teacher models. In this work, we propose transferring interpretable knowledge by extending conventional logit transfer to convey not just the right prediction but also the right reasoning of the teacher. Specifically, we induce other useful knowledge from the teacher logits termed temporal saliency which captures the importance of each input timestep to the teacher prediction. By training the student with Temporal Saliency Distillation we encourage it to make predictions based on the same input features as the teacher. Temporal Saliency Distillation requires no additional parameters or architecture specific assumptions. We demonstrate that Temporal Saliency Distillation effectively improves the performance of baseline methods while also achieving desirable properties beyond predictive accuracy. We hope our work establishes a new paradigm for interpretable knowledge distillation in time series analysis.
Chronic diseases such as diabetes pose significant management challenges, particularly due to the risk of complications like hypoglycemia, which require timely detection and intervention. Continuous health monitoring through wearable sensors offers a promising solution for early prediction of glycemic events. However, effective use of multisensor data is hindered by issues such as signal noise and frequent missing values. This study examines the limitations of existing datasets and emphasizes the temporal characteristics of key features relevant to hypoglycemia prediction. A comprehensive analysis of imputation techniques is conducted, focusing on those employed in state-of-the-art studies. Furthermore, imputation methods derived from machine learning and deep learning applications in other healthcare contexts are evaluated for their potential to address longer gaps in time-series data. Based on this analysis, a systematic paradigm is proposed, wherein imputation strategies are tailored to the nature of specific features and the duration of missing intervals. The review concludes by emphasizing the importance of investigating the temporal dynamics of individual features and the implementation of multiple, feature-specific imputation techniques to effectively address heterogeneous temporal patterns inherent in the data.
Drawing on psychological and literary theory, we investigated whether the warmth and competence of movie protagonists predict IMDb ratings, and whether these effects vary across genres. Using 2,858 films and series from the Movie Scripts Corpus, we identified protagonists via AI-assisted annotation and quantified their warmth and competence with the LLM_annotate package ([1]; human-LLM agreement: r = .83). Preregistered Bayesian regression analyses revealed theory-consistent but small associations between both warmth and competence and audience ratings, while genre-specific interactions did not meaningfully improve predictions. Male protagonists were slightly less warm than female protagonists, and movies with male leads received higher ratings on average (an association that was multiple times stronger than the relationships between movie ratings and warmth/competence). These findings suggest that, although audiences tend to favor warm, competent characters, the effects on movie evaluations are modest, indicating that character personality is only one of many factors shaping movie ratings. AI-assisted annotation with LLM_annotate and gpt-4.1-mini proved effective for large-scale analyses but occasionally fell short of manually generated annotations.
Root cause analysis in modern cloud infrastructure demands sophisticated understanding of heterogeneous data sources, particularly time-series performance metrics that involve core failure signatures. While large language models demonstrate remarkable capabilities in textual reasoning, their discrete token-based architecture creates fundamental incompatibilities with continuous numerical sequences exhibiting temporal dependencies. Current methodologies inadequately address this modality mismatch, constraining the potential of language model-driven automation in incident management workflows. This paper presents a multimodal diagnostic framework that harmonizes time-series representations with pretrained language model embedding spaces. Our approach contributes three technical advances: (1) a semantic compression technique that distills temporal segments into single-token abstractions while preserving pattern semantics, (2) an alignment encoder utilizing gated cross-attention to project time-series features into language model latent space, and (3) a retrieval-augmented diagnostic pipeline that synthesizes aligned embeddings with historical incident knowledge for expert-level failure attribution. Comprehensive evaluation across six cloud system benchmarks demonstrates that our framework achieves leading performance, reaching 48.75% diagnostic accuracy with notable improvements on scenarios involving compound failure modes. The results validate embedding-space alignment as an effective strategy for enabling language models to reason over multimodal telemetry data in production incident response contexts.