The opioid epidemic remains one of the most severe public health crises in the United States, yet evaluating policy interventions before implementation is difficult: multiple policies interact within a dynamic system where targeting one risk pathway may inadvertently amplify another. We argue that effective opioid policy evaluation requires three capabilities -- forecasting future outcomes under current policies, counterfactual reasoning about alternative past decisions, and optimization over candidate interventions -- and propose to unify them through world modeling. We introduce Policy4OOD, a knowledge-guided spatio-temporal world model that addresses three core challenges: what policies prescribe, where effects manifest, and when effects unfold.Policy4OOD jointly encodes policy knowledge graphs, state-level spatial dependencies, and socioeconomic time series into a policy-conditioned Transformer that forecasts future opioid outcomes.Once trained, the world model serves as a simulator: forecasting requires only a forward pass, counterfactual analysis substitutes alternative policy encodings in the historical sequence, and policy optimization employs Monte Carlo Tree Search over the learned simulator. To support this framework, we construct a state-level monthly dataset (2019--2024) integrating opioid mortality, socioeconomic indicators, and structured policy encodings. Experiments demonstrate that spatial dependencies and structured policy knowledge significantly improve forecasting accuracy, validating each architectural component and the potential of world modeling for data-driven public health decision support.