Abstract:Temporal graph learning is pivotal for deciphering dynamic systems, where the core challenge lies in explicitly modeling the underlying evolving patterns that govern network transformation. However, prevailing methods are predominantly task-centric and rely on restrictive assumptions -- such as short-term dependency modeling, static neighborhood semantics, and retrospective time usage. These constraints hinder the discovery of transferable temporal evolution mechanisms. To address this, we propose the Temporal Graph Pattern Machine (TGPM), a foundation framework that shifts the focus toward directly learning generalized evolving patterns. TGPM conceptualizes each interaction as an interaction patch synthesized via temporally-biased random walks, thereby capturing multi-scale structural semantics and long-range dependencies that extend beyond immediate neighborhoods. These patches are processed by a Transformer-based backbone designed to capture global temporal regularities while adapting to context-specific interaction dynamics. To further empower the model, we introduce a suite of self-supervised pre-training tasks -- specifically masked token modeling and next-time prediction -- to explicitly encode the fundamental laws of network evolution. Extensive experiments show that TGPM consistently achieves state-of-the-art performance in both transductive and inductive link prediction, demonstrating exceptional cross-domain transferability.
Abstract:Large language model (LLM)-based agents exhibit strong step-by-step reasoning capabilities over short horizons, yet often fail to sustain coherent behavior over long planning horizons. We argue that this failure reflects a fundamental mismatch: step-wise reasoning induces a form of step-wise greedy policy that is adequate for short horizons but fails in long-horizon planning, where early actions must account for delayed consequences. From this planning-centric perspective, we study LLM-based agents in deterministic, fully structured environments with explicit state transitions and evaluation signals. Our analysis reveals a core failure mode of reasoning-based policies: locally optimal choices induced by step-wise scoring lead to early myopic commitments that are systematically amplified over time and difficult to recover from. We introduce FLARE (Future-aware Lookahead with Reward Estimation) as a minimal instantiation of future-aware planning to enforce explicit lookahead, value propagation, and limited commitment in a single model, allowing downstream outcomes to influence early decisions. Across multiple benchmarks, agent frameworks, and LLM backbones, FLARE consistently improves task performance and planning-level behavior, frequently allowing LLaMA-8B with FLARE to outperform GPT-4o with standard step-by-step reasoning. These results establish a clear distinction between reasoning and planning.
Abstract:Graph-structured data pervades domains such as social networks, biological systems, knowledge graphs, and recommender systems. While foundation models have transformed natural language processing, vision, and multimodal learning through large-scale pretraining and generalization, extending these capabilities to graphs -- characterized by non-Euclidean structures and complex relational semantics -- poses unique challenges and opens new opportunities. To this end, Graph Foundation Models (GFMs) aim to bring scalable, general-purpose intelligence to structured data, enabling broad transfer across graph-centric tasks and domains. This survey provides a comprehensive overview of GFMs, unifying diverse efforts under a modular framework comprising three key components: backbone architectures, pretraining strategies, and adaptation mechanisms. We categorize GFMs by their generalization scope -- universal, task-specific, and domain-specific -- and review representative methods, key innovations, and theoretical insights within each category. Beyond methodology, we examine theoretical foundations including transferability and emergent capabilities, and highlight key challenges such as structural alignment, heterogeneity, scalability, and evaluation. Positioned at the intersection of graph learning and general-purpose AI, GFMs are poised to become foundational infrastructure for open-ended reasoning over structured data. This survey consolidates current progress and outlines future directions to guide research in this rapidly evolving field. Resources are available at https://github.com/Zehong-Wang/Awesome-Foundation-Models-on-Graphs.