Abstract:We study parametric change-point detection, where the goal is to identify distributional changes in time series, under local differential privacy. In the non-private setting, we derive improved finite-sample accuracy guarantees for a change-point detection algorithm based on the generalized log-likelihood ratio test, via martingale methods. In the private setting, we propose two locally differentially private algorithms based on randomized response and binary mechanisms, and analyze their theoretical performance. We derive bounds on detection accuracy and validate our results through empirical evaluation. Our results characterize the statistical cost of local differential privacy in change-point detection and show how privacy degrades performance relative to a non-private benchmark. As part of this analysis, we establish a structural result for strong data processing inequalities (SDPI), proving that SDPI coefficients for Rényi divergences and their symmetric variants (Jeffreys-Rényi divergences) are achieved by binary input distributions. These results on SDPI coefficients are also of independent interest, with applications to statistical estimation, data compression, and Markov chain mixing.