Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
In open-world environments, human-object interactions (HOIs) evolve continuously, challenging conventional closed-world HOI detection models. Inspired by humans' ability to progressively acquire knowledge, we explore incremental HOI detection (IHOID) to develop agents capable of discerning human-object relations in such dynamic environments. This setup confronts not only the common issue of catastrophic forgetting in incremental learning but also distinct challenges posed by interaction drift and detecting zero-shot HOI combinations with sequentially arriving data. Therefore, we propose a novel exemplar-free incremental relation distillation (IRD) framework. IRD decouples the learning of objects and relations, and introduces two unique distillation losses for learning invariant relation features across different HOI combinations that share the same relation. Extensive experiments on HICO-DET and V-COCO datasets demonstrate the superiority of our method over state-of-the-art baselines in mitigating forgetting, strengthening robustness against interaction drift, and generalization on zero-shot HOIs. Code is available at \href{https://github.com/weiyana/ContinualHOI}{this HTTP URL}
The presence of occlusions has provided substantial challenges to typically-powerful object recognition algorithms. Additional sources of information can be extremely valuable to reduce errors caused by occlusions. Scene context is known to aid in object recognition in biological vision. In this work, we attempt to add robustness into existing Region Proposal Network-Deep Convolutional Neural Network (RPN-DCNN) object detection networks through two distinct scene-based information fusion techniques. We present one algorithm under each methodology: the first operates prior to prediction, selecting a custom object network to use based on the identified background scene, and the second operates after detection, fusing scene knowledge into initial object scores output by the RPN. We demonstrate our algorithms on challenging datasets featuring partial occlusions, which show overall improvement in both recall and precision against baseline methods. In addition, our experiments contrast multiple training methodologies for occlusion handling, finding that training on a combination of both occluded and unoccluded images demonstrates an improvement over the others. Our method is interpretable and can easily be adapted to other datasets, offering many future directions for research and practical applications.
Modes of transportation vary across countries depending on geographical location and cultural context. In South Asian countries rickshaws are among the most common means of local transport. Based on their mode of operation, rickshaws in cities across Bangladesh can be broadly classified into non-auto (pedal-powered) and auto-rickshaws (motorized). Monitoring the movement of auto-rickshaws is necessary as traffic rules often restrict auto-rickshaws from accessing certain routes. However, existing surveillance systems make it quite difficult to monitor them due to their similarity to other vehicles, especially non-auto rickshaws whereas manual video analysis is too time-consuming. This paper presents a machine learning-based approach to automatically detect auto-rickshaws in traffic images. In this system, we used real-time object detection using the YOLOv8 model. For training purposes, we prepared a set of 1,730 annotated images that were captured under various traffic conditions. The results show that our proposed model performs well in real-time auto-rickshaw detection and offers an mAP50 of 83.447% and binary precision and recall values above 78%, demonstrating its effectiveness in handling both dense and sparse traffic scenarios. The dataset has been publicly released for further research.
Modern imaging techniques heavily rely on Bayesian statistical models to address difficult image reconstruction and restoration tasks. This paper addresses the objective evaluation of such models in settings where ground truth is unavailable, with a focus on model selection and misspecification diagnosis. Existing unsupervised model evaluation methods are often unsuitable for computational imaging due to their high computational cost and incompatibility with modern image priors defined implicitly via machine learning models. We herein propose a general methodology for unsupervised model selection and misspecification detection in Bayesian imaging sciences, based on a novel combination of Bayesian cross-validation and data fission, a randomized measurement splitting technique. The approach is compatible with any Bayesian imaging sampler, including diffusion and plug-and-play samplers. We demonstrate the methodology through experiments involving various scoring rules and types of model misspecification, where we achieve excellent selection and detection accuracy with a low computational cost.
Objective: ServiMon is designed to offer a scalable and intelligent pipeline for data collection and auditing to monitor distributed astronomical systems such as the ASTRI Mini-Array. The system enhances quality control, predictive maintenance, and real-time anomaly detection for telescope operations. Methods: ServiMon integrates cloud-native technologies-including Prometheus, Grafana, Cassandra, Kafka, and InfluxDB-for telemetry collection and processing. It employs machine learning algorithms, notably Isolation Forest, to detect anomalies in Cassandra performance metrics. Key indicators such as read/write latency, throughput, and memory usage are continuously monitored, stored as time-series data, and preprocessed for feature engineering. Anomalies detected by the model are logged in InfluxDB v2 and accessed via Flux for real-time monitoring and visualization. Results: AI-based anomaly detection increases system resilience by identifying performance degradation at an early stage, minimizing downtime, and optimizing telescope operations. Additionally, ServiMon supports astrostatistical analysis by correlating telemetry with observational data, thus enhancing scientific data quality. AI-generated alerts also improve real-time monitoring, enabling proactive system management. Conclusion: ServiMon's scalable framework proves effective for predictive maintenance and real-time monitoring of astronomical infrastructures. By leveraging cloud and edge computing, it is adaptable to future large-scale experiments, optimizing both performance and cost. The combination of machine learning and big data analytics makes ServiMon a robust and flexible solution for modern and next-generation observational astronomy.
Dataset bias, where data points are skewed to certain concepts, is ubiquitous in machine learning datasets. Yet, systematically identifying these biases is challenging without costly, fine-grained attribute annotations. We present ConceptScope, a scalable and automated framework for analyzing visual datasets by discovering and quantifying human-interpretable concepts using Sparse Autoencoders trained on representations from vision foundation models. ConceptScope categorizes concepts into target, context, and bias types based on their semantic relevance and statistical correlation to class labels, enabling class-level dataset characterization, bias identification, and robustness evaluation through concept-based subgrouping. We validate that ConceptScope captures a wide range of visual concepts, including objects, textures, backgrounds, facial attributes, emotions, and actions, through comparisons with annotated datasets. Furthermore, we show that concept activations produce spatial attributions that align with semantically meaningful image regions. ConceptScope reliably detects known biases (e.g., background bias in Waterbirds) and uncovers previously unannotated ones (e.g, co-occurring objects in ImageNet), offering a practical tool for dataset auditing and model diagnostics.
The Internet of Things has expanded rapidly, transforming communication and operations across industries but also increasing the attack surface and security breaches. Artificial Intelligence plays a key role in securing IoT, enabling attack detection, attack behavior analysis, and mitigation suggestion. Despite advancements, evaluations remain purely qualitative, and the lack of a standardized, objective benchmark for quantitatively measuring AI-based attack analysis and mitigation hinders consistent assessment of model effectiveness. In this work, we propose a hybrid framework combining Machine Learning (ML) for multi-class attack detection with Large Language Models (LLMs) for attack behavior analysis and mitigation suggestion. After benchmarking several ML and Deep Learning (DL) classifiers on the Edge-IIoTset and CICIoT2023 datasets, we applied structured role-play prompt engineering with Retrieval-Augmented Generation (RAG) to guide ChatGPT-o3 and DeepSeek-R1 in producing detailed, context-aware responses. We introduce novel evaluation metrics for quantitative assessment to guide us and an ensemble of judge LLMs, namely ChatGPT-4o, DeepSeek-V3, Mixtral 8x7B Instruct, Gemini 2.5 Flash, Meta Llama 4, TII Falcon H1 34B Instruct, xAI Grok 3, and Claude 4 Sonnet, to independently evaluate the responses. Results show that Random Forest has the best detection model, and ChatGPT-o3 outperformed DeepSeek-R1 in attack analysis and mitigation.
Accurate building instance segmentation and height classification are critical for urban planning, 3D city modeling, and infrastructure monitoring. This paper presents a detailed analysis of YOLOv11, the recent advancement in the YOLO series of deep learning models, focusing on its application to joint building extraction and discrete height classification from satellite imagery. YOLOv11 builds on the strengths of earlier YOLO models by introducing a more efficient architecture that better combines features at different scales, improves object localization accuracy, and enhances performance in complex urban scenes. Using the DFC2023 Track 2 dataset -- which includes over 125,000 annotated buildings across 12 cities -- we evaluate YOLOv11's performance using metrics such as precision, recall, F1 score, and mean average precision (mAP). Our findings demonstrate that YOLOv11 achieves strong instance segmentation performance with 60.4\% mAP@50 and 38.3\% mAP@50--95 while maintaining robust classification accuracy across five predefined height tiers. The model excels in handling occlusions, complex building shapes, and class imbalance, particularly for rare high-rise structures. Comparative analysis confirms that YOLOv11 outperforms earlier multitask frameworks in both detection accuracy and inference speed, making it well-suited for real-time, large-scale urban mapping. This research highlights YOLOv11's potential to advance semantic urban reconstruction through streamlined categorical height modeling, offering actionable insights for future developments in remote sensing and geospatial intelligence.
Importance Incidental thyroid findings (ITFs) are increasingly detected on imaging performed for non-thyroid indications. Their prevalence, features, and clinical consequences remain undefined. Objective To develop, validate, and deploy a natural language processing (NLP) pipeline to identify ITFs in radiology reports and assess their prevalence, features, and clinical outcomes. Design, Setting, and Participants Retrospective cohort of adults without prior thyroid disease undergoing thyroid-capturing imaging at Mayo Clinic sites from July 1, 2017, to September 30, 2023. A transformer-based NLP pipeline identified ITFs and extracted nodule characteristics from image reports from multiple modalities and body regions. Main Outcomes and Measures Prevalence of ITFs, downstream thyroid ultrasound, biopsy, thyroidectomy, and thyroid cancer diagnosis. Logistic regression identified demographic and imaging-related factors. Results Among 115,683 patients (mean age, 56.8 [SD 17.2] years; 52.9% women), 9,077 (7.8%) had an ITF, of which 92.9% were nodules. ITFs were more likely in women, older adults, those with higher BMI, and when imaging was ordered by oncology or internal medicine. Compared with chest CT, ITFs were more likely via neck CT, PET, and nuclear medicine scans. Nodule characteristics were poorly documented, with size reported in 44% and other features in fewer than 15% (e.g. calcifications). Compared with patients without ITFs, those with ITFs had higher odds of thyroid nodule diagnosis, biopsy, thyroidectomy and thyroid cancer diagnosis. Most cancers were papillary, and larger when detected after ITFs vs no ITF. Conclusions ITFs were common and strongly associated with cascades leading to the detection of small, low-risk cancers. These findings underscore the role of ITFs in thyroid cancer overdiagnosis and the need for standardized reporting and more selective follow-up.
Visual reasoning, particularly spatial reasoning, is a challenging cognitive task that requires understanding object relationships and their interactions within complex environments, especially in robotics domain. Existing vision_language models (VLMs) excel at perception tasks but struggle with fine-grained spatial reasoning due to their implicit, correlation-driven reasoning and reliance solely on images. We propose a novel neuro_symbolic framework that integrates both panoramic-image and 3D point cloud information, combining neural perception with symbolic reasoning to explicitly model spatial and logical relationships. Our framework consists of a perception module for detecting entities and extracting attributes, and a reasoning module that constructs a structured scene graph to support precise, interpretable queries. Evaluated on the JRDB-Reasoning dataset, our approach demonstrates superior performance and reliability in crowded, human_built environments while maintaining a lightweight design suitable for robotics and embodied AI applications.