LMI
Abstract:To mitigate the threat of misinformation, multimodal manipulation localization has garnered growing attention. Consider that current methods rely on costly and time-consuming fine-grained annotations, such as patch/token-level annotations. This paper proposes a novel framework named Coupling Implicit and Explicit Cues (CIEC), which aims to achieve multimodal weakly-supervised manipulation localization for image-text pairs utilizing only coarse-grained image/sentence-level annotations. It comprises two branches, image-based and text-based weakly-supervised localization. For the former, we devise the Textual-guidance Refine Patch Selection (TRPS) module. It integrates forgery cues from both visual and textual perspectives to lock onto suspicious regions aided by spatial priors. Followed by the background silencing and spatial contrast constraints to suppress interference from irrelevant areas. For the latter, we devise the Visual-deviation Calibrated Token Grounding (VCTG) module. It focuses on meaningful content words and leverages relative visual bias to assist token localization. Followed by the asymmetric sparse and semantic consistency constraints to mitigate label noise and ensure reliability. Extensive experiments demonstrate the effectiveness of our CIEC, yielding results comparable to fully supervised methods on several evaluation metrics.
Abstract:The exceptional performance of diffusion models establishes them as high-value intellectual property but exposes them to unauthorized replication. Existing protection methods either modify the model to embed watermarks, which impairs performance, or extract model fingerprints by manipulating the denoising process, rendering them incompatible with black-box APIs. In this paper, we propose TrajPrint, a completely lossless and training-free framework that verifies model copyright by extracting unique manifold fingerprints formed during deterministic generation. Specifically, we first utilize a watermarked image as an anchor and exactly trace the path back to its trajectory origin, effectively locking the model fingerprint mapped by this path. Subsequently, we implement a joint optimization strategy that employs dual-end anchoring to synthesize a specific fingerprint noise, which strictly adheres to the target manifold for robust watermark recovery. As input, it enables the protected target model to recover the watermarked image, while failing on non-target models. Finally, we achieved verification via atomic inference and statistical hypothesis testing. Extensive experiments demonstrate that TrajPrint achieves lossless verification in black-box API scenarios with superior robustness against model modifications.
Abstract:Deepfake detection is a widely researched topic that is crucial for combating the spread of malicious content, with existing methods mainly modeling the problem as classification or spatial localization. The rapid advancements in generative models impose new demands on Deepfake detection. In this paper, we propose multimodal alignment and reinforcement for explainable Deepfake detection via vision-language models, termed MARE, which aims to enhance the accuracy and reliability of Vision-Language Models (VLMs) in Deepfake detection and reasoning. Specifically, MARE designs comprehensive reward functions, incorporating reinforcement learning from human feedback (RLHF), to incentivize the generation of text-spatially aligned reasoning content that adheres to human preferences. Besides, MARE introduces a forgery disentanglement module to capture intrinsic forgery traces from high-level facial semantics, thereby improving its authenticity detection capability. We conduct thorough evaluations on the reasoning content generated by MARE. Both quantitative and qualitative experimental results demonstrate that MARE achieves state-of-the-art performance in terms of accuracy and reliability.
Abstract:Modern deepfakes have evolved into localized and intermittent manipulations that require fine-grained temporal localization. The prohibitive cost of frame-level annotation makes weakly supervised methods a practical necessity, which rely only on video-level labels. To this end, we propose Reconstruction-based Temporal Deepfake Localization (RT-DeepLoc), a weakly supervised temporal forgery localization framework that identifies forgeries via reconstruction errors. Our framework uses a Masked Autoencoder (MAE) trained exclusively on authentic data to learn its intrinsic spatiotemporal patterns; this allows the model to produce significant reconstruction discrepancies for forged segments, effectively providing the missing fine-grained cues for localization. To robustly leverage these indicators, we introduce a novel Asymmetric Intra-video Contrastive Loss (AICL). By focusing on the compactness of authentic features guided by these reconstruction cues, AICL establishes a stable decision boundary that enhances local discrimination while preserving generalization to unseen forgeries. Extensive experiments on large-scale datasets, including LAV-DF, demonstrate that RT-DeepLoc achieves state-of-the-art performance in weakly-supervised temporal forgery localization.
Abstract:Machine unlearning is an emerging technique that aims to remove the influence of specific data from trained models, thereby enhancing privacy protection. However, recent research has uncovered critical privacy vulnerabilities, showing that adversaries can exploit unlearning inversion to reconstruct data that was intended to be erased. Despite the severity of this threat, dedicated defenses remain lacking. To address this gap, we propose UnlearnShield, the first defense specifically tailored to counter unlearning inversion. UnlearnShield introduces directional perturbations in the cosine representation space and regulates them through a constraint module to jointly preserve model accuracy and forgetting efficacy, thereby reducing inversion risk while maintaining utility. Experiments demonstrate that it achieves a good trade-off among privacy protection, accuracy, and forgetting.
Abstract:The rapid evolution of diffusion models has democratized face swapping but also raises concerns about privacy and identity security. Existing proactive defenses, often adapted from image editing attacks, prove ineffective in this context. We attribute this failure to an oversight of the structural resilience and the unique static conditional guidance mechanism inherent in face swapping systems. To address this, we propose VoidFace, a systemic defense method that views face swapping as a coupled identity pathway. By injecting perturbations at critical bottlenecks, VoidFace induces cascading disruption throughout the pipeline. Specifically, we first introduce localization disruption and identity erasure to degrade physical regression and semantic embeddings, thereby impairing the accurate modeling of the source face. We then intervene in the generative domain by decoupling attention mechanisms to sever identity injection, and corrupting intermediate diffusion features to prevent the reconstruction of source identity. To ensure visual imperceptibility, we perform adversarial search in the latent manifold, guided by a perceptual adaptive strategy to balance attack potency with image quality. Extensive experiments show that VoidFace outperforms existing defenses across various diffusion-based swapping models, while producing adversarial faces with superior visual quality.
Abstract:Current remote sensing change detection (CD) methods mainly rely on specialized models, which limits the scalability toward modality-adaptive Earth observation. For homogeneous CD, precise boundary delineation relies on fine-grained spatial cues and local pixel interactions, whereas heterogeneous CD instead requires broader contextual information to suppress speckle noise and geometric distortions. Moreover, difference operator (e.g., subtraction) works well for aligned homogeneous images but introduces artifacts in cross-modal or geometrically misaligned scenarios. Across different modality settings, specialized models based on static backbones or fixed difference operations often prove insufficient. To address this challenge, we propose UniRoute, a unified framework for modality-adaptive learning by reformulating feature extraction and fusion as conditional routing problems. We introduce an Adaptive Receptive Field Routing MoE (AR2-MoE) module to disentangle local spatial details from global semantic context, and a Modality-Aware Difference Routing MoE (MDR-MoE) module to adaptively select the most suitable fusion primitive at each pixel. In addition, we propose a Consistency-Aware Self-Distillation (CASD) strategy that stabilizes unified training under data-scarce heterogeneous settings by enforcing multi-level consistency. Extensive experiments on five public datasets demonstrate that UniRoute achieves strong overall performance, with a favorable accuracy-efficiency trade-off under a unified deployment setting.
Abstract:The advancement of Document Intelligence (DI) demands large-scale, high-quality training data, yet manual annotation remains a critical bottleneck. While data generation methods are evolving rapidly, existing surveys are constrained by fragmented focuses on single modalities or specific tasks, lacking a unified perspective aligned with real-world workflows. To fill this gap, this survey establishes the first comprehensive technical map for data generation in DI. Data generation is redefined as supervisory signal production, and a novel taxonomy is introduced based on the "availability of data and labels." This framework organizes methodologies into four resource-centric paradigms: Data Augmentation, Data Generation from Scratch, Automated Data Annotation, and Self-Supervised Signal Construction. Furthermore, a multi-level evaluation framework is established to integrate intrinsic quality and extrinsic utility, compiling performance gains across diverse DI benchmarks. Guided by this unified structure, the methodological landscape is dissected to reveal critical challenges such as fidelity gaps and frontiers including co-evolutionary ecosystems. Ultimately, by systematizing this fragmented field, data generation is positioned as the central engine for next-generation DI.
Abstract:Optics-guided thermal UAV image super-resolution has attracted significant research interest due to its potential in all-weather monitoring applications. However, existing methods typically compress optical features to match thermal feature dimensions for cross-modal alignment and fusion, which not only causes the loss of high-frequency information that is beneficial for thermal super-resolution, but also introduces physically inconsistent artifacts such as texture distortions and edge blurring by overlooking differences in the imaging physics between modalities. To address these challenges, we propose PCNet to achieve cross-resolution mutual enhancement between optical and thermal modalities, while physically constraining the optical guidance process via thermal conduction to enable robust thermal UAV image super-resolution. In particular, we design a Cross-Resolution Mutual Enhancement Module (CRME) to jointly optimize thermal image super-resolution and optical-to-thermal modality conversion, facilitating effective bidirectional feature interaction across resolutions while preserving high-frequency optical priors. Moreover, we propose a Physics-Driven Thermal Conduction Module (PDTM) that incorporates two-dimensional heat conduction into optical guidance, modeling spatially-varying heat conduction properties to prevent inconsistent artifacts. In addition, we introduce a temperature consistency loss that enforces regional distribution consistency and boundary gradient smoothness to ensure generated thermal images align with real-world thermal radiation principles. Extensive experiments on VGTSR2.0 and DroneVehicle datasets demonstrate that PCNet significantly outperforms state-of-the-art methods on both reconstruction quality and downstream tasks including semantic segmentation and object detection.
Abstract:Neural ranking models have achieved remarkable progress and are now widely deployed in real-world applications such as Retrieval-Augmented Generation (RAG). However, like other neural architectures, they remain vulnerable to adversarial manipulations: subtle character-, word-, or phrase-level perturbations can poison retrieval results and artificially promote targeted candidates, undermining the integrity of search engines and downstream systems. Existing defenses either rely on heuristics with poor generalization or on certified methods that assume overly strong adversarial knowledge, limiting their practical use. To address these challenges, we propose RobustMask, a novel defense that combines the context-prediction capability of pretrained language models with a randomized masking-based smoothing mechanism. Our approach strengthens neural ranking models against adversarial perturbations at the character, word, and phrase levels. Leveraging both the pairwise comparison ability of ranking models and probabilistic statistical analysis, we provide a theoretical proof of RobustMask's certified top-K robustness. Extensive experiments further demonstrate that RobustMask successfully certifies over 20% of candidate documents within the top-10 ranking positions against adversarial perturbations affecting up to 30% of their content. These results highlight the effectiveness of RobustMask in enhancing the adversarial robustness of neural ranking models, marking a significant step toward providing stronger security guarantees for real-world retrieval systems.