Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Micro-expressions (MEs) are regarded as important indicators of an individual's intrinsic emotions, preferences, and tendencies. ME analysis requires spotting of ME intervals within long video sequences and recognition of their corresponding emotional categories. Previous deep learning approaches commonly employ sliding-window classification networks. However, the use of fixed window lengths and hard classification presents notable limitations in practice. Furthermore, these methods typically treat ME spotting and recognition as two separate tasks, overlooking the essential relationship between them. To address these challenges, this paper proposes two state space model-based architectures, namely ME-TST and ME-TST+, which utilize temporal state transition mechanisms to replace conventional window-level classification with video-level regression. This enables a more precise characterization of the temporal dynamics of MEs and supports the modeling of MEs with varying durations. In ME-TST+, we further introduce multi-granularity ROI modeling and the slowfast Mamba framework to alleviate information loss associated with treating ME analysis as a time-series task. Additionally, we propose a synergy strategy for spotting and recognition at both the feature and result levels, leveraging their intrinsic connection to enhance overall analysis performance. Extensive experiments demonstrate that the proposed methods achieve state-of-the-art performance. The codes are available at https://github.com/zizheng-guo/ME-TST.
Large Language Model-based Time Series Forecasting (LLMTS) has shown remarkable promise in handling complex and diverse temporal data, representing a significant step toward foundation models for time series analysis. However, this emerging paradigm introduces two critical challenges. First, the substantial commercial potential and resource-intensive development raise urgent concerns about intellectual property (IP) protection. Second, their powerful time series forecasting capabilities may be misused to produce misleading or fabricated deepfake time series data. To address these concerns, we explore watermarking the outputs of LLMTS models, that is, embedding imperceptible signals into the generated time series data that remain detectable by specialized algorithms. We propose a novel post-hoc watermarking framework, Waltz, which is broadly compatible with existing LLMTS models. Waltz is inspired by the empirical observation that time series patch embeddings are rarely aligned with a specific set of LLM tokens, which we term ``cold tokens''. Leveraging this insight, Waltz embeds watermarks by rewiring the similarity statistics between patch embeddings and cold token embeddings, and detects watermarks using similarity z-scores. To minimize potential side effects, we introduce a similarity-based embedding position identification strategy and employ projected gradient descent to constrain the watermark noise within a defined boundary. Extensive experiments using two popular LLMTS models across seven benchmark datasets demonstrate that Waltz achieves high watermark detection accuracy with minimal impact on the quality of the generated time series.
We propose a novel framework that harnesses the power of generative artificial intelligence and copula-based modeling to address two critical challenges in multivariate time-series analysis: delivering accurate predictions and enabling robust anomaly detection. Our method, Copula-based Conformal Anomaly Identification for Multivariate Time-Series (CoCAI), leverages a diffusion-based model to capture complex dependencies within the data, enabling high quality forecasting. The model's outputs are further calibrated using a conformal prediction technique, yielding predictive regions which are statistically valid, i.e., cover the true target values with a desired confidence level. Starting from these calibrated forecasts, robust outlier detection is performed by combining dimensionality reduction techniques with copula-based modeling, providing a statistically grounded anomaly score. CoCAI benefits from an offline calibration phase that allows for minimal overhead during deployment and delivers actionable results rooted in established theoretical foundations. Empirical tests conducted on real operational data derived from water distribution and sewerage systems confirm CoCAI's effectiveness in accurately forecasting target sequences of data and in identifying anomalous segments within them.
This chapter extends the family of perception-informed gap-based local planners to dynamic environments. Existing perception-informed local planners that operate in dynamic environments often rely on emergent or empirical robustness for collision avoidance as opposed to performing formal analysis of dynamic obstacles. This proposed planner, dynamic gap, explicitly addresses dynamic obstacles through several steps in the planning pipeline. First, polar regions of free space known as gaps are tracked and their dynamics are estimated in order to understand how the local environment evolves over time. Then, at planning time, gaps are propagated into the future through novel gap propagation algorithms to understand what regions are feasible for passage. Lastly, pursuit guidance theory is leveraged to generate local trajectories that are provably collision-free under ideal conditions. Additionally, obstacle-centric ungap processing is performed in situations where no gaps exist to robustify the overall planning framework. A set of gap-based planners are benchmarked against a series of classical and learned motion planners in dynamic environments, and dynamic gap is shown to outperform all other baselines in all environments. Furthermore, dynamic gap is deployed on a TurtleBot2 platform in several real-world experiments to validate collision avoidance behaviors.




This study proposes a novel portfolio optimization framework that integrates statistical social network analysis with time series forecasting and risk management. Using daily stock data from the S&P 500 (2020-2024), we construct dependency networks via Vector Autoregression (VAR) and Forecast Error Variance Decomposition (FEVD), transforming influence relationships into a cost-based network. Specifically, FEVD breaks down the VAR's forecast error variance to quantify how much each stock's shocks contribute to another's uncertainty information we invert to form influence-based edge weights in our network. By applying the Minimum Spanning Tree (MST) algorithm, we extract the core inter-stock structure and identify central stocks through degree centrality. A dynamic portfolio is constructed using the top-ranked stocks, with capital allocated based on Value at Risk (VaR). To refine stock selection, we incorporate forecasts from ARIMA and Neural Network Autoregressive (NNAR) models. Trading simulations over a one-year period demonstrate that the MST-based strategies outperform a buy-and-hold benchmark, with the tuned NNAR-enhanced strategy achieving a 63.74% return versus 18.00% for the benchmark. Our results highlight the potential of combining network structures, predictive modeling, and risk metrics to improve adaptive financial decision-making.
Time-series forecasting underpins critical decisions across aviation, energy, retail and health. Classical autoregressive integrated moving average (ARIMA) models offer interpretability via coefficients but struggle with nonlinearities, whereas tree-based machine-learning models such as XGBoost deliver high accuracy but are often opaque. This paper presents a unified framework for interpreting time-series forecasts using local interpretable model-agnostic explanations (LIME) and SHapley additive exPlanations (SHAP). We convert a univariate series into a leakage-free supervised learning problem, train a gradient-boosted tree alongside an ARIMA baseline and apply post-hoc explainability. Using the Air Passengers dataset as a case study, we show that a small set of lagged features -- particularly the twelve-month lag -- and seasonal encodings explain most forecast variance. We contribute: (i) a methodology for applying LIME and SHAP to time series without violating chronology; (ii) theoretical exposition of the underlying algorithms; (iii) empirical evaluation with extensive analysis; and (iv) guidelines for practitioners.
We introduce a novel class of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) paradigm, called Residual Reservoir Memory Networks (ResRMNs). ResRMN combines a linear memory reservoir with a non-linear reservoir, where the latter is based on residual orthogonal connections along the temporal dimension for enhanced long-term propagation of the input. The resulting reservoir state dynamics are studied through the lens of linear stability analysis, and we investigate diverse configurations for the temporal residual connections. The proposed approach is empirically assessed on time-series and pixel-level 1-D classification tasks. Our experimental results highlight the advantages of the proposed approach over other conventional RC models.




Electrocardiogram (ECG) analysis is foundational for cardiovascular disease diagnosis, yet the performance of deep learning models is often constrained by limited access to annotated data. Self-supervised contrastive learning has emerged as a powerful approach for learning robust ECG representations from unlabeled signals. However, most existing methods generate only pairwise augmented views and fail to leverage the rich temporal structure of ECG recordings. In this work, we present a poly-window contrastive learning framework. We extract multiple temporal windows from each ECG instance to construct positive pairs and maximize their agreement via statistics. Inspired by the principle of slow feature analysis, our approach explicitly encourages the model to learn temporally invariant and physiologically meaningful features that persist across time. We validate our approach through extensive experiments and ablation studies on the PTB-XL dataset. Our results demonstrate that poly-window contrastive learning consistently outperforms conventional two-view methods in multi-label superclass classification, achieving higher AUROC (0.891 vs. 0.888) and F1 scores (0.680 vs. 0.679) while requiring up to four times fewer pre-training epochs (32 vs. 128) and 14.8% in total wall clock pre-training time reduction. Despite processing multiple windows per sample, we achieve a significant reduction in the number of training epochs and total computation time, making our method practical for training foundational models. Through extensive ablations, we identify optimal design choices and demonstrate robustness across various hyperparameters. These findings establish poly-window contrastive learning as a highly efficient and scalable paradigm for automated ECG analysis and provide a promising general framework for self-supervised representation learning in biomedical time-series data.
This study proposes the dual technological innovation framework, including a cross-modal differ entiated quantization framework for vision-language models (VLMs) and a scene-aware vectorized memory multi-agent system for visually impaired assistance. The modular framework was developed implementing differentiated processing strategies, effectively reducing memory requirements from 38GB to 16GB while maintaining model performance. The multi-agent architecture combines scene classification, vectorized memory, and multimodal interaction, enabling persistent storage and efficient retrieval of scene memories. Through perception-memory-reasoning workflows, the system provides environmental information beyond the current view using historical memories. Experiments show the quantized 19B-parameter model only experiences a 2.05% performance drop on MMBench and maintains 63.7 accuracy on OCR-VQA (original: 64.9), outperforming smaller models with equivalent memory requirements like the Molmo-7B series. The system maintains response latency between 2.83-3.52 seconds from scene analysis to initial speech output, substantially faster than non-streaming methods. This research advances computational efficiency and assistive technology, offering visually impaired users comprehensive real-time assistance in scene perception, text recognition, and navigation.
The Coherent Multiplex is formalized and validated as a scalable, real-time system for identifying, analyzing, and visualizing coherence among multiple time series. Its architecture comprises a fast spectral similarity layer based on cosine similarity metrics of Fourier-transformed signals, and a sparse time-frequency layer for wavelet coherence. The system constructs and evolves a multilayer graph representing inter-signal relationships, enabling low-latency inference and monitoring. A simulation prototype demonstrates functionality across 8 synthetic channels with a high similarity threshold for further computation, with additional opportunities for scaling the architecture up to support thousands of input signals with constrained hardware. Applications discussed include neuroscience, finance, and biomedical signal analysis.