Abstract:Time series forecasting is critical across multiple domains, where time series data exhibits both local patterns and global dependencies. While Transformer-based methods effectively capture global dependencies, they often overlook short-term local variations in time series. Recent methods that adapt large language models (LLMs) into time series forecasting inherit this limitation by treating LLMs as black-box encoders, relying solely on the final-layer output and underutilizing hierarchical representations. To address this limitation, we propose Logo-LLM, a novel LLM-based framework that explicitly extracts and models multi-scale temporal features from different layers of a pre-trained LLM. Through empirical analysis, we show that shallow layers of LLMs capture local dynamics in time series, while deeper layers encode global trends. Moreover, Logo-LLM introduces lightweight Local-Mixer and Global-Mixer modules to align and integrate features with the temporal input across layers. Extensive experiments demonstrate that Logo-LLM achieves superior performance across diverse benchmarks, with strong generalization in few-shot and zero-shot settings while maintaining low computational overhead.
Abstract:Recently, Transformer-based methods have significantly improved state-of-the-art time series forecasting results, but they suffer from high computational costs and the inability to capture the long and short periodicity of time series. We present a highly accurate and simply structured CNN-based model for long-term time series forecasting tasks, called WinNet, including (i) Inter-Intra Period Encoder (I2PE) to transform 1D sequence into 2D tensor with long and short periodicity according to the predefined periodic window, (ii) Two-Dimensional Period Decomposition (TDPD) to model period-trend and oscillation terms, and (iii) Decomposition Correlation Block (DCB) to leverage the correlations of the period-trend and oscillation terms to support the prediction tasks by CNNs. Results on nine benchmark datasets show that the WinNet can achieve SOTA performance and lower computational complexity over CNN-, MLP-, Transformer-based approaches. The WinNet provides potential for the CNN-based methods in the time series forecasting tasks, with perfect tradeoff between performance and efficiency.