Abstract:State-space models (SSMs), particularly the Mamba architecture, have emerged as powerful alternatives to Transformers for sequence modeling, offering linear-time complexity and competitive performance across diverse tasks. However, their large parameter counts pose significant challenges for deployment in resource-constrained environments. We propose a novel unstructured pruning framework tailored for Mamba models that achieves up to 70\% parameter reduction while retaining over 95\% of the original performance. Our approach integrates three key innovations: (1) a gradient-aware magnitude pruning technique that combines weight magnitude and gradient information to identify less critical parameters, (2) an iterative pruning schedule that gradually increases sparsity to maintain model stability, and (3) a global pruning strategy that optimizes parameter allocation across the entire model. Through extensive experiments on WikiText-103, Long Range Arena, and ETT time-series benchmarks, we demonstrate significant efficiency gains with minimal performance degradation. Our analysis of pruning effects on Mamba's components reveals critical insights into the architecture's redundancy and robustness, enabling practical deployment in resource-constrained settings while broadening Mamba's applicability.
Abstract:Integrating large language models (LLMs) as priors in reinforcement learning (RL) offers significant advantages but comes with substantial computational costs. We present a principled cache-efficient framework for posterior sampling with LLM-derived priors that dramatically reduces these costs while maintaining high performance. At the core of our approach is an adaptive caching mechanism, where cache parameters are meta-optimized using surrogate gradients derived from policy performance. This design enables efficient inference across both discrete text environments (e.g., TextWorld, ALFWorld) and continuous control domains (e.g., MuJoCo), achieving a 3.8--4.7$\times$ reduction in LLM queries and 4.0--12.0$\times$ lower median latencies (85--93\,ms on a consumer GPU) while retaining 96--98\% of uncached performance. Our theoretical analysis provides KL divergence bounds on approximation quality, validated empirically. The framework extends to offline RL, where our CQL-Prior variant improves performance by 14--29\% and reduces training time by 38--40\%. Extensive evaluations across a diverse suite of eight tasks demonstrate the generalizability and practical viability of LLM-guided RL in resource-constrained settings.
Abstract:Quantum machine learning for spin and molecular systems faces critical challenges of scarce labeled data and computationally expensive simulations. To address these limitations, we introduce Hamiltonian-Masked Autoencoding (HMAE), a novel self-supervised framework that pre-trains transformers on unlabeled quantum Hamiltonians, enabling efficient few-shot transfer learning. Unlike random masking approaches, HMAE employs a physics-informed strategy based on quantum information theory to selectively mask Hamiltonian terms based on their physical significance. Experiments on 12,500 quantum Hamiltonians (60% real-world, 40% synthetic) demonstrate that HMAE achieves 85.3% $\pm$ 1.5% accuracy in phase classification and 0.15 $\pm$ 0.02 eV MAE in ground state energy prediction with merely 10 labeled examples - a statistically significant improvement (p < 0.01) over classical graph neural networks (78.1% $\pm$ 2.1%) and quantum neural networks (76.8% $\pm$ 2.3%). Our method's primary advantage is exceptional sample efficiency - reducing required labeled examples by 3-5x compared to baseline methods - though we emphasize that ground truth values for fine-tuning and evaluation still require exact diagonalization or tensor networks. We explicitly acknowledge that our current approach is limited to small quantum systems (specifically limited to 12 qubits during training, with limited extension to 16-20 qubits in testing) and that, while promising within this regime, this size restriction prevents immediate application to larger systems of practical interest in materials science and quantum chemistry.
Abstract:Accurate weather classification from low-quality traffic camera imagery remains a challenging task, particularly under adverse nighttime conditions. In this study, we propose a scalable framework that combines generative domain adaptation with efficient contrastive learning to enhance classification performance. Using CycleGAN-based domain translation, we improve the quality of nighttime images, enabling better feature extraction by downstream models. While the baseline EVA-02 model employing CLIP-based contrastive loss achieves an overall accuracy of 96.55\%, it exhibits a significant performance gap between daytime (97.21\%) and nighttime conditions (63.40\%). Replacing CLIP with the lightweight SigLIP-2 (Sigmoid contrastive loss) achieves a competitive overall accuracy of 94.00\%, with substantial improvements in nighttime performance (85.90\% accuracy). The combination of Vision-SigLIP-2, Text-SigLIP-2, CycleGAN, and contrastive training achieves the best nighttime accuracy (85.90\%) among all models tested, while EVA-02 with CycleGAN maintains the highest overall accuracy (97.01\%) and per-class accuracies. These findings demonstrate the potential of combining domain adaptation and efficient contrastive learning to build practical, resource-efficient weather classification systems for intelligent transportation infrastructure.
Abstract:This study explores the relationship between deep learning (DL) model accuracy and expert agreement in the classification of crash narratives. We evaluate five DL models -- including BERT variants, the Universal Sentence Encoder (USE), and a zero-shot classifier -- against expert-labeled data and narrative text. The analysis is further extended to four large language models (LLMs): GPT-4, LLaMA 3, Qwen, and Claude. Our results reveal a counterintuitive trend: models with higher technical accuracy often exhibit lower agreement with domain experts, whereas LLMs demonstrate greater expert alignment despite relatively lower accuracy scores. To quantify and interpret model-expert agreement, we employ Cohen's Kappa, Principal Component Analysis (PCA), and SHAP-based explainability techniques. Findings indicate that expert-aligned models tend to rely more on contextual and temporal language cues, rather than location-specific keywords. These results underscore that accuracy alone is insufficient for evaluating models in safety-critical NLP applications. We advocate for incorporating expert agreement as a complementary metric in model evaluation frameworks and highlight the promise of LLMs as interpretable, scalable tools for crash analysis pipelines.
Abstract:Understanding the relationship between mild cognitive impairment and driving behavior is essential to improve road safety, especially among older adults. In this study, we computed certain variables that reflect daily driving habits, such as trips to specific locations (e.g., home, work, medical, social, and errands) of older drivers in Nebraska using geohashing. The computed variables were then analyzed using a two-fold approach involving data visualization and machine learning models (C5.0, Random Forest, Support Vector Machines) to investigate the efficiency of the computed variables in predicting whether a driver is cognitively impaired or unimpaired. The C5.0 model demonstrated robust and stable performance with a median recall of 74\%, indicating that our methodology was able to identify cognitive impairment in drivers 74\% of the time correctly. This highlights our model's effectiveness in minimizing false negatives which is an important consideration given the cost of missing impaired drivers could be potentially high. Our findings highlight the potential of life space variables in understanding and predicting cognitive decline, offering avenues for early intervention and tailored support for affected individuals.
Abstract:Traffic crash detection in long-form surveillance videos is critical for emergency response and infrastructure planning but remains difficult due to the brief and rare nature of crash events. We introduce HybridMamba, a novel architecture that combines visual transformers with state-space temporal modeling to achieve accurate crash time localization. Our method uses multi-level token compression and hierarchical temporal processing to remain computationally efficient without sacrificing temporal resolution. Evaluated on a large-scale dataset from the Iowa Department of Transportation, HybridMamba achieves a mean absolute error of 1.50 seconds, with 65.2 percent of predictions within one second of the ground truth. It outperforms recent video-language models such as TimeChat and VideoLLaMA2 by up to 2.8 seconds, while using significantly fewer parameters. Our results demonstrate strong generalization across videos ranging from 2 to 40 minutes in diverse conditions. HybridMamba offers a robust and efficient solution for fine-grained temporal localization in traffic surveillance. The code will be released upon publication.
Abstract:By 2030, the senior population aged 65 and older is expected to increase by over 50%, significantly raising the number of older drivers on the road. Drivers over 70 face higher crash death rates compared to those in their forties and fifties, underscoring the importance of developing more effective safety interventions for this demographic. Although the impact of aging on driving behavior has been studied, there is limited research on how these behaviors translate into real-world driving scenarios. This study addresses this need by leveraging Naturalistic Driving Data (NDD) to analyze driving performance measures - specifically, speed limit adherence on interstates and deceleration at stop intersections, both of which may be influenced by age-related declines. Using NDD, we developed Cumulative Distribution Functions (CDFs) to establish benchmarks for key driving behaviors among senior and young drivers. Our analysis, which included anomaly detection, benchmark comparisons, and accuracy evaluations, revealed significant differences in driving patterns primarily related to speed limit adherence at 75mph. While our approach shows promising potential for enhancing Advanced Driver Assistance Systems (ADAS) by providing tailored interventions based on age-specific adherence to speed limit driving patterns, we recognize the need for additional data to refine and validate metrics for other driving behaviors. By establishing precise benchmarks for various driving performance metrics, ADAS can effectively identify anomalies, such as abrupt deceleration, which may indicate impaired driving or other safety concerns. This study lays a strong foundation for future research aimed at improving safety interventions through detailed driving behavior analysis.
Abstract:Safety-critical applications, such as autonomous driving, require extensive multimodal data for rigorous testing. Methods based on synthetic data are gaining prominence due to the cost and complexity of gathering real-world data but require a high degree of realism and controllability in order to be useful. This paper introduces MObI, a novel framework for Multimodal Object Inpainting that leverages a diffusion model to create realistic and controllable object inpaintings across perceptual modalities, demonstrated for both camera and lidar simultaneously. Using a single reference RGB image, MObI enables objects to be seamlessly inserted into existing multimodal scenes at a 3D location specified by a bounding box, while maintaining semantic consistency and multimodal coherence. Unlike traditional inpainting methods that rely solely on edit masks, our 3D bounding box conditioning gives objects accurate spatial positioning and realistic scaling. As a result, our approach can be used to insert novel objects flexibly into multimodal scenes, providing significant advantages for testing perception models.
Abstract:The graph neural networks has been proved to be an efficient machine learning technique in real life applications. The handwritten recognition is one of the useful area in real life use where both offline and online handwriting recognition are required. The chain code as feature extraction technique has shown significant results in literature and we have been able to use chain codes with graph neural networks. To the best of our knowledge, this work presents first time a novel combination of handwritten trajectories features as chain codes and graph neural networks together. The handwritten trajectories for offline handwritten text has been evaluated using recovery of drawing order, whereas online handwritten trajectories are directly used with chain codes. Our results prove that present combination surpass previous results and minimize error rate in few epochs only.