Extending the input modality of Large Language Models~(LLMs) to the audio domain is essential for achieving comprehensive multimodal perception. However, it is well-known that acoustic information is intrinsically \textit{heterogeneous}, entangling attributes such as speech, music, and environmental context. Existing research is limited to a dense, parameter-shared adapter to model these diverse patterns, which induces \textit{gradient conflict} during optimization, as parameter updates required for distinct attributes contradict each other. To address this limitation, we introduce the \textit{\textbf{MoE-Adapter}}, a sparse Mixture-of-Experts~(MoE) architecture designed to decouple acoustic information. Specifically, it employs a dynamic gating mechanism that routes audio tokens to specialized experts capturing complementary feature subspaces while retaining shared experts for global context, thereby mitigating gradient conflicts and enabling fine-grained feature learning. Comprehensive experiments show that the MoE-Adapter achieves superior performance on both audio semantic and paralinguistic tasks, consistently outperforming dense linear baselines with comparable computational costs. Furthermore, we will release the related code and models to facilitate future research.
Multi-speaker automatic speech recognition (MASR) aims to predict ''who spoke when and what'' from multi-speaker speech, a key technology for multi-party dialogue understanding. However, most existing approaches decouple temporal modeling and speaker modeling when addressing ''when'' and ''who'': some inject speaker cues before encoding (e.g., speaker masking), which can cause irreversible information loss; others fuse identity by mixing speaker posteriors after encoding, which may entangle acoustic content with speaker identity. This separation is brittle under rapid turn-taking and overlapping speech, often leading to degraded performance. To address these limitations, we propose TellWhisper, a unified framework that jointly models speaker identity and temporal within the speech encoder. Specifically, we design TS-RoPE, a time-speaker rotary positional encoding: time coordinates are derived from frame indices, while speaker coordinates are derived from speaker activity and pause cues. By applying region-specific rotation angles, the model explicitly captures per-speaker continuity, speaker-turn transitions, and state dynamics, enabling the attention mechanism to simultaneously attend to ''when'' and ''who''. Moreover, to estimate frame-level speaker activity, we develop Hyper-SD, which casts speaker classification in hyperbolic space to enhance inter-class separation and refine speaker-activity estimates. Extensive experiments demonstrate the effectiveness of the proposed approach.
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
Zero-shot text-to-speech models can clone a speaker's timbre from a short reference audio, but they also strongly inherit the speaking style present in the reference. As a result, synthesizing speech with a desired style often requires carefully selecting reference audio, which is impractical when only limited or mismatched references are available. While recent controllable TTS methods attempt to address this issue, they typically rely on absolute style targets and discrete textual prompts, and therefore do not support continuous and reference-relative style control. We propose ReStyle-TTS, a framework that enables continuous and reference-relative style control in zero-shot TTS. Our key insight is that effective style control requires first reducing the model's implicit dependence on reference style before introducing explicit control mechanisms. To this end, we introduce Decoupled Classifier-Free Guidance (DCFG), which independently controls text and reference guidance, reducing reliance on reference style while preserving text fidelity. On top of this, we apply style-specific LoRAs together with Orthogonal LoRA Fusion to enable continuous and disentangled multi-attribute control, and introduce a Timbre Consistency Optimization module to mitigate timbre drift caused by weakened reference guidance. Experiments show that ReStyle-TTS enables user-friendly, continuous, and relative control over pitch, energy, and multiple emotions while maintaining intelligibility and speaker timbre, and performs robustly in challenging mismatched reference-target style scenarios.
Hate speech detection models rely on surface-level lexical features, increasing vulnerability to spurious correlations and limiting robustness, cultural contextualization, and interpretability. We propose Supervised Moral Rationale Attention (SMRA), the first self-explaining hate speech detection framework to incorporate moral rationales as direct supervision for attention alignment. Based on Moral Foundations Theory, SMRA aligns token-level attention with expert-annotated moral rationales, guiding models to attend to morally salient spans rather than spurious lexical patterns. Unlike prior rationale-supervised or post-hoc approaches, SMRA integrates moral rationale supervision directly into the training objective, producing inherently interpretable and contextualized explanations. To support our framework, we also introduce HateBRMoralXplain, a Brazilian Portuguese benchmark dataset annotated with hate labels, moral categories, token-level moral rationales, and socio-political metadata. Across binary hate speech detection and multi-label moral sentiment classification, SMRA consistently improves performance (e.g., +0.9 and +1.5 F1, respectively) while substantially enhancing explanation faithfulness, increasing IoU F1 (+7.4 pp) and Token F1 (+5.0 pp). Although explanations become more concise, sufficiency improves (+2.3 pp) and fairness remains stable, indicating more faithful rationales without performance or bias trade-offs
Automatic speech recognition systems have achieved remarkable performance on fluent speech but continue to degrade significantly when processing stuttered speech, a limitation that is particularly acute for low-resource languages like Indonesian where specialized datasets are virtually non-existent. To overcome this scarcity, we propose a data augmentation framework that generates synthetic stuttered audio by injecting repetitions and prolongations into fluent text through a combination of rule-based transformations and large language models followed by text-to-speech synthesis. We apply this synthetic data to fine-tune a pre-trained Indonesian Whisper model using transfer learning, enabling the architecture to adapt to dysfluent acoustic patterns without requiring large-scale real-world recordings. Our experiments demonstrate that this targeted synthetic exposure consistently reduces recognition errors on stuttered speech while maintaining performance on fluent segments, validating the utility of synthetic data pipelines for developing more inclusive speech technologies in under-represented languages.
Electro-laryngeal (EL) speech is characterized by constant pitch, limited prosody, and mechanical noise, reducing naturalness and intelligibility. We propose a lightweight adaptation of the state-of-the-art StreamVC framework to this setting by removing pitch and energy modules and combining self-supervised pretraining with supervised fine-tuning on parallel EL and healthy (HE) speech data, guided by perceptual and intelligibility losses. Objective and subjective evaluations across different loss configurations confirm their influence: the best model variant, based on WavLM features and human-feedback predictions (+WavLM+HF), drastically reduces character error rate (CER) of EL inputs, raises naturalness mean opinion score (nMOS) from 1.1 to 3.3, and consistently narrows the gap to HE ground-truth speech in all evaluated metrics. These findings demonstrate the feasibility of adapting lightweight voice conversion architectures to EL voice rehabilitation while also identifying prosody generation and intelligibility improvements as the main remaining bottlenecks.
ASVspoof 5 is the fifth edition in a series of challenges which promote the study of speech spoofing and deepfake detection solutions. A significant change from previous challenge editions is a new crowdsourced database collected from a substantially greater number of speakers under diverse recording conditions, and a mix of cutting-edge and legacy generative speech technology. With the new database described elsewhere, we provide in this paper an overview of the ASVspoof 5 challenge results for the submissions of 53 participating teams. While many solutions perform well, performance degrades under adversarial attacks and the application of neural encoding/compression schemes. Together with a review of post-challenge results, we also report a study of calibration in addition to other principal challenges and outline a road-map for the future of ASVspoof.
Large Audio-Language Models (LALMs) as judges have emerged as a prominent approach for evaluating speech generation quality, yet their ability to assess speaker consistency across multi-turn conversations remains unexplored. We present SpeakerSleuth, a benchmark evaluating whether LALMs can reliably judge speaker consistency in multi-turn dialogues through three tasks reflecting real-world requirements. We construct 1,818 human-verified evaluation instances across four diverse datasets spanning synthetic and real speech, with controlled acoustic difficulty. Evaluating nine widely-used LALMs, we find that models struggle to reliably detect acoustic inconsistencies. For instance, given audio samples of the same speaker's turns, some models overpredict inconsistency, whereas others are overly lenient. Models further struggle to identify the exact turns that are problematic. When other interlocutors' turns are provided together, performance degrades dramatically as models prioritize textual coherence over acoustic cues, failing to detect even obvious gender switches for a speaker. On the other hand, models perform substantially better in choosing the audio that best matches the speaker among several acoustic variants, demonstrating inherent acoustic discrimination capabilities. These findings expose a significant bias in LALMs: they tend to prioritize text over acoustics, revealing fundamental modality imbalances that need to be addressed to build reliable audio-language judges.
Current safety evaluations of large language models (LLMs) create a dangerous illusion of universality, aggregating "Identity Hate" into scalar scores that mask systemic vulnerabilities against specific populations. To expose this selective safety, we introduce MiJaBench, a bilingual (English and Portuguese) adversarial benchmark comprising 44,000 prompts across 16 minority groups. By generating 528,000 prompt-response pairs from 12 state-of-the-art LLMs, we curate MiJaBench-Align, revealing that safety alignment is not a generalized semantic capability but a demographic hierarchy: defense rates fluctuate by up to 33\% within the same model solely based on the target group. Crucially, we demonstrate that model scaling exacerbates these disparities, suggesting that current alignment techniques do not create principle of non-discrimination but reinforces memorized refusal boundaries only for specific groups, challenging the current scaling laws of security. We release all datasets and scripts to encourage research into granular demographic alignment at GitHub.