Abstract:The success of building textless speech-to-speech translation (S2ST) models has attracted much attention. However, S2ST still faces two main challenges: 1) extracting linguistic features for various speech signals, called cross-modal (CM), and 2) learning alignment of difference languages in long sequences, called cross-lingual (CL). We propose the unit language to overcome the two modeling challenges. The unit language can be considered a text-like representation format, constructed using $n$-gram language modeling. We implement multi-task learning to utilize the unit language in guiding the speech modeling process. Our initial results reveal a conflict when applying source and target unit languages simultaneously. We propose task prompt modeling to mitigate this conflict. We conduct experiments on four languages of the Voxpupil dataset. Our method demonstrates significant improvements over a strong baseline and achieves performance comparable to models trained with text.
Abstract:Research on Graph Structure Learning (GSL) provides key insights for graph-based clustering, yet current methods like Graph Neural Networks (GNNs), Graph Attention Networks (GATs), and contrastive learning often rely heavily on the original graph structure. Their performance deteriorates when the original graph's adjacency matrix is too sparse or contains noisy edges unrelated to clustering. Moreover, these methods depend on learning node embeddings and using traditional techniques like k-means to form clusters, which may not fully capture the underlying graph structure between nodes. To address these limitations, this paper introduces DeSE, a novel unsupervised graph clustering framework incorporating Deep Structural Entropy. It enhances the original graph with quantified structural information and deep neural networks to form clusters. Specifically, we first propose a method for calculating structural entropy with soft assignment, which quantifies structure in a differentiable form. Next, we design a Structural Learning layer (SLL) to generate an attributed graph from the original feature data, serving as a target to enhance and optimize the original structural graph, thereby mitigating the issue of sparse connections between graph nodes. Finally, our clustering assignment method (ASS), based on GNNs, learns node embeddings and a soft assignment matrix to cluster on the enhanced graph. The ASS layer can be stacked to meet downstream task requirements, minimizing structural entropy for stable clustering and maximizing node consistency with edge-based cross-entropy loss. Extensive comparative experiments are conducted on four benchmark datasets against eight representative unsupervised graph clustering baselines, demonstrating the superiority of the DeSE in both effectiveness and interpretability.
Abstract:Complex claim fact-checking performs a crucial role in disinformation detection. However, existing fact-checking methods struggle with claim vagueness, specifically in effectively handling latent information and complex relations within claims. Moreover, evidence redundancy, where nonessential information complicates the verification process, remains a significant issue. To tackle these limitations, we propose Bilateral Defusing Verification (BiDeV), a novel fact-checking working-flow framework integrating multiple role-played LLMs to mimic the human-expert fact-checking process. BiDeV consists of two main modules: Vagueness Defusing identifies latent information and resolves complex relations to simplify the claim, and Redundancy Defusing eliminates redundant content to enhance the evidence quality. Extensive experimental results on two widely used challenging fact-checking benchmarks (Hover and Feverous-s) demonstrate that our BiDeV can achieve the best performance under both gold and open settings. This highlights the effectiveness of BiDeV in handling complex claims and ensuring precise fact-checking
Abstract:Visual grounding has attracted wide attention thanks to its broad application in various visual language tasks. Although visual grounding has made significant research progress, existing methods ignore the promotion effect of the association between text and image features at different hierarchies on cross-modal matching. This paper proposes a Phrase Decoupling Cross-Modal Hierarchical Matching and Progressive Position Correction Visual Grounding method. It first generates a mask through decoupled sentence phrases, and a text and image hierarchical matching mechanism is constructed, highlighting the role of association between different hierarchies in cross-modal matching. In addition, a corresponding target object position progressive correction strategy is defined based on the hierarchical matching mechanism to achieve accurate positioning for the target object described in the text. This method can continuously optimize and adjust the bounding box position of the target object as the certainty of the text description of the target object improves. This design explores the association between features at different hierarchies and highlights the role of features related to the target object and its position in target positioning. The proposed method is validated on different datasets through experiments, and its superiority is verified by the performance comparison with the state-of-the-art methods.
Abstract:Existing research on news summarization primarily focuses on single-language single-document (SLSD), single-language multi-document (SLMD) or cross-language single-document (CLSD). However, in real-world scenarios, news about a international event often involves multiple documents in different languages, i.e., mixed-language multi-document (MLMD). Therefore, summarizing MLMD news is of great significance. However, the lack of datasets for MLMD news summarization has constrained the development of research in this area. To fill this gap, we construct a mixed-language multi-document news summarization dataset (MLMD-news), which contains four different languages and 10,992 source document cluster and target summary pairs. Additionally, we propose a graph-based extract-generate model and benchmark various methods on the MLMD-news dataset and publicly release our dataset and code\footnote[1]{https://github.com/Southnf9/MLMD-news}, aiming to advance research in summarization within MLMD scenarios.
Abstract:Tables are ubiquitous across various domains for concisely representing structured information. Empowering large language models (LLMs) to reason over tabular data represents an actively explored direction. However, since typical LLMs only support one-dimensional~(1D) inputs, existing methods often flatten the two-dimensional~(2D) table structure into a sequence of tokens, which can severely disrupt the spatial relationships and result in an inevitable loss of vital contextual information. In this paper, we first empirically demonstrate the detrimental impact of such flattening operations on the performance of LLMs in capturing the spatial information of tables through two elaborate proxy tasks. Subsequently, we introduce a simple yet effective positional encoding method, termed ``2D-TPE'' (Two-Dimensional Table Positional Encoding), to address this challenge. 2D-TPE enables each attention head to dynamically select a permutation order of tokens within the context for attending to them, where each permutation represents a distinct traversal mode for the table, such as column-wise or row-wise traversal. 2D-TPE effectively mitigates the risk of losing essential spatial information while preserving computational efficiency, thus better preserving the table structure. Extensive experiments across five benchmarks demonstrate that 2D-TPE outperforms strong baselines, underscoring the importance of preserving the table structure for accurate table comprehension. Comprehensive analysis further reveals the substantially better scalability of 2D-TPE to large tables than baselines.
Abstract:Multilingual Knowledge Graph Completion (mKGC) aim at solving queries like (h, r, ?) in different languages by reasoning a tail entity t thus improving multilingual knowledge graphs. Previous studies leverage multilingual pretrained language models (PLMs) and the generative paradigm to achieve mKGC. Although multilingual pretrained language models contain extensive knowledge of different languages, its pretraining tasks cannot be directly aligned with the mKGC tasks. Moreover, the majority of KGs and PLMs currently available exhibit a pronounced English-centric bias. This makes it difficult for mKGC to achieve good results, particularly in the context of low-resource languages. To overcome previous problems, this paper introduces global and local knowledge constraints for mKGC. The former is used to constrain the reasoning of answer entities, while the latter is used to enhance the representation of query contexts. The proposed method makes the pretrained model better adapt to the mKGC task. Experimental results on public datasets demonstrate that our method outperforms the previous SOTA on Hits@1 and Hits@10 by an average of 12.32% and 16.03%, which indicates that our proposed method has significant enhancement on mKGC.
Abstract:Standard Large Language Models (LLMs) struggle with handling dialogues with long contexts due to efficiency and consistency issues. According to our observation, dialogue contexts are highly structured, and the special token of \textit{End-of-Utterance} (EoU) in dialogues has the potential to aggregate information. We refer to the EoU tokens as ``conversational attention sinks'' (conv-attn sinks). Accordingly, we introduce StreamingDialogue, which compresses long dialogue history into conv-attn sinks with minimal losses, and thus reduces computational complexity quadratically with the number of sinks (i.e., the number of utterances). Current LLMs already demonstrate the ability to handle long context window, e.g., a window size of 200k or more. To this end, by compressing utterances into EoUs, our method has the potential to handle more than 200k of utterances, resulting in a prolonged dialogue learning. In order to minimize information losses from reconstruction after compression, we design two learning strategies of short-memory reconstruction (SMR) and long-memory reactivation (LMR). Our method outperforms strong baselines in dialogue tasks and achieves a 4 $\times$ speedup while reducing memory usage by 18 $\times$ compared to dense attention recomputation.
Abstract:Personalized dialogue systems have gained significant attention in recent years for their ability to generate responses in alignment with different personas. However, most existing approaches rely on pre-defined personal profiles, which are not only time-consuming and labor-intensive to create but also lack flexibility. We propose In-Dialogue Learning (IDL), a fine-tuning framework that enhances the ability of pre-trained large language models to leverage dialogue history to characterize persona for completing personalized dialogue generation tasks without pre-defined profiles. Our experiments on three datasets demonstrate that IDL brings substantial improvements, with BLEU and ROUGE scores increasing by up to 200% and 247%, respectively. Additionally, the results of human evaluations further validate the efficacy of our proposed method.
Abstract:The reconstruction of high dynamic range (HDR) images from multi-exposure low dynamic range (LDR) images in dynamic scenes presents significant challenges, especially in preserving and restoring information in oversaturated regions and avoiding ghosting artifacts. While current methods often struggle to address these challenges, our work aims to bridge this gap by developing a multi-exposure HDR image reconstruction network for dynamic scenes, complemented by single-frame HDR image reconstruction. This network, comprising single-frame HDR reconstruction with enhanced stop image (SHDR-ESI) and SHDR-ESI-assisted multi-exposure HDR reconstruction (SHDRA-MHDR), effectively leverages the ghost-free characteristic of single-frame HDR reconstruction and the detail-enhancing capability of ESI in oversaturated areas. Specifically, SHDR-ESI innovatively integrates single-frame HDR reconstruction with the utilization of ESI. This integration not only optimizes the single image HDR reconstruction process but also effectively guides the synthesis of multi-exposure HDR images in SHDR-AMHDR. In this method, the single-frame HDR reconstruction is specifically applied to reduce potential ghosting effects in multiexposure HDR synthesis, while the use of ESI images assists in enhancing the detail information in the HDR synthesis process. Technically, SHDR-ESI incorporates a detail enhancement mechanism, which includes a self-representation module and a mutual-representation module, designed to aggregate crucial information from both reference image and ESI. To fully leverage the complementary information from non-reference images, a feature interaction fusion module is integrated within SHDRA-MHDR. Additionally, a ghost suppression module, guided by the ghost-free results of SHDR-ESI, is employed to suppress the ghosting artifacts.