Topic:Real Time Semantic Segmentation
What is Real Time Semantic Segmentation? Semantic segmentation is a computer-vision task that involves assigning a semantic label to each pixel in an image. In Real-Time Semantic Segmentation, the goal is to perform this labeling quickly and accurately in real time, allowing for the segmentation results to be used for tasks such as object recognition, scene understanding, and autonomous navigation.
Papers and Code
Jun 15, 2025
Abstract:The Deep Learning Visual Space Simulation System (DLVS3) introduces a novel synthetic dataset generator and a simulation pipeline specifically designed for training and testing satellite pose estimation solutions. This work introduces the DLVS3-HST-V1 dataset, which focuses on the Hubble Space Telescope (HST) as a complex, articulated target. The dataset is generated using advanced real-time and offline rendering technologies, integrating high-fidelity 3D models, dynamic lighting (including secondary sources like Earth reflection), and physically accurate material properties. The pipeline supports the creation of large-scale, richly annotated image sets with ground-truth 6-DoF pose and keypoint data, semantic segmentation, depth, and normal maps. This enables the training and benchmarking of deep learning-based pose estimation solutions under realistic, diverse, and challenging visual conditions. The paper details the dataset generation process, the simulation architecture, and the integration with deep learning frameworks, and positions DLVS3 as a significant step toward closing the domain gap for autonomous spacecraft operations in proximity and servicing missions.
* 8 pages, 6 figures
Via

Jun 13, 2025
Abstract:Incomplete multi-modal medical image segmentation faces critical challenges from modality imbalance, including imbalanced modality missing rates and heterogeneous modality contributions. Due to their reliance on idealized assumptions of complete modality availability, existing methods fail to dynamically balance contributions and neglect the structural relationships between modalities, resulting in suboptimal performance in real-world clinical scenarios. To address these limitations, we propose a novel model, named Dynamic Modality-Aware Fusion Network (DMAF-Net). The DMAF-Net adopts three key ideas. First, it introduces a Dynamic Modality-Aware Fusion (DMAF) module to suppress missing-modality interference by combining transformer attention with adaptive masking and weight modality contributions dynamically through attention maps. Second, it designs a synergistic Relation Distillation and Prototype Distillation framework to enforce global-local feature alignment via covariance consistency and masked graph attention, while ensuring semantic consistency through cross-modal class-specific prototype alignment. Third, it presents a Dynamic Training Monitoring (DTM) strategy to stabilize optimization under imbalanced missing rates by tracking distillation gaps in real-time, and to balance convergence speeds across modalities by adaptively reweighting losses and scaling gradients. Extensive experiments on BraTS2020 and MyoPS2020 demonstrate that DMAF-Net outperforms existing methods for incomplete multi-modal medical image segmentation. Extensive experiments on BraTS2020 and MyoPS2020 demonstrate that DMAF-Net outperforms existing methods for incomplete multi-modal medical image segmentation. Our code is available at https://github.com/violet-42/DMAF-Net.
* 12 pages, 4 figures, 3 tables
Via

Jun 11, 2025
Abstract:We propose a feed-forward Gaussian Splatting model that unifies 3D scene and semantic field reconstruction. Combining 3D scenes with semantic fields facilitates the perception and understanding of the surrounding environment. However, key challenges include embedding semantics into 3D representations, achieving generalizable real-time reconstruction, and ensuring practical applicability by using only images as input without camera parameters or ground truth depth. To this end, we propose UniForward, a feed-forward model to predict 3D Gaussians with anisotropic semantic features from only uncalibrated and unposed sparse-view images. To enable the unified representation of the 3D scene and semantic field, we embed semantic features into 3D Gaussians and predict them through a dual-branch decoupled decoder. During training, we propose a loss-guided view sampler to sample views from easy to hard, eliminating the need for ground truth depth or masks required by previous methods and stabilizing the training process. The whole model can be trained end-to-end using a photometric loss and a distillation loss that leverages semantic features from a pre-trained 2D semantic model. At the inference stage, our UniForward can reconstruct 3D scenes and the corresponding semantic fields in real time from only sparse-view images. The reconstructed 3D scenes achieve high-quality rendering, and the reconstructed 3D semantic field enables the rendering of view-consistent semantic features from arbitrary views, which can be further decoded into dense segmentation masks in an open-vocabulary manner. Experiments on novel view synthesis and novel view segmentation demonstrate that our method achieves state-of-the-art performances for unifying 3D scene and semantic field reconstruction.
Via

Jun 11, 2025
Abstract:Open-Vocabulary semantic segmentation (OVSS) and domain generalization in semantic segmentation (DGSS) highlight a subtle complementarity that motivates Open-Vocabulary Domain-Generalized Semantic Segmentation (OV-DGSS). OV-DGSS aims to generate pixel-level masks for unseen categories while maintaining robustness across unseen domains, a critical capability for real-world scenarios such as autonomous driving in adverse conditions. We introduce Vireo, a novel single-stage framework for OV-DGSS that unifies the strengths of OVSS and DGSS for the first time. Vireo builds upon the frozen Visual Foundation Models (VFMs) and incorporates scene geometry via Depth VFMs to extract domain-invariant structural features. To bridge the gap between visual and textual modalities under domain shift, we propose three key components: (1) GeoText Prompts, which align geometric features with language cues and progressively refine VFM encoder representations; (2) Coarse Mask Prior Embedding (CMPE) for enhancing gradient flow for faster convergence and stronger textual influence; and (3) the Domain-Open-Vocabulary Vector Embedding Head (DOV-VEH), which fuses refined structural and semantic features for robust prediction. Comprehensive evaluation on these components demonstrates the effectiveness of our designs. Our proposed Vireo achieves the state-of-the-art performance and surpasses existing methods by a large margin in both domain generalization and open-vocabulary recognition, offering a unified and scalable solution for robust visual understanding in diverse and dynamic environments. Code is available at https://github.com/anonymouse-9c53tp182bvz/Vireo.
Via

Jun 10, 2025
Abstract:To meet the growing demand for systematic surgical training, wetlab environments have become indispensable platforms for hands-on practice in ophthalmology. Yet, traditional wetlab training depends heavily on manual performance evaluations, which are labor-intensive, time-consuming, and often subject to variability. Recent advances in computer vision offer promising avenues for automated skill assessment, enhancing both the efficiency and objectivity of surgical education. Despite notable progress in ophthalmic surgical datasets, existing resources predominantly focus on real surgeries or isolated tasks, falling short of supporting comprehensive skill evaluation in controlled wetlab settings. To address these limitations, we introduce WetCat, the first dataset of wetlab cataract surgery videos specifically curated for automated skill assessment. WetCat comprises high-resolution recordings of surgeries performed by trainees on artificial eyes, featuring comprehensive phase annotations and semantic segmentations of key anatomical structures. These annotations are meticulously designed to facilitate skill assessment during the critical capsulorhexis and phacoemulsification phases, adhering to standardized surgical skill assessment frameworks. By focusing on these essential phases, WetCat enables the development of interpretable, AI-driven evaluation tools aligned with established clinical metrics. This dataset lays a strong foundation for advancing objective, scalable surgical education and sets a new benchmark for automated workflow analysis and skill assessment in ophthalmology training. The dataset and annotations are publicly available in Synapse https://www.synapse.org/Synapse:syn66401174/files.
* 9 pages, 6 figures
Via

Jun 06, 2025
Abstract:This paper addresses the problem of category-level pose estimation for articulated objects in robotic manipulation tasks. Recent works have shown promising results in estimating part pose and size at the category level. However, these approaches primarily follow a complex multi-stage pipeline that first segments part instances in the point cloud and then estimates the Normalized Part Coordinate Space (NPCS) representation for 6D poses. These approaches suffer from high computational costs and low performance in real-time robotic tasks. To address these limitations, we propose YOEO, a single-stage method that simultaneously outputs instance segmentation and NPCS representations in an end-to-end manner. We use a unified network to generate point-wise semantic labels and centroid offsets, allowing points from the same part instance to vote for the same centroid. We further utilize a clustering algorithm to distinguish points based on their estimated centroid distances. Finally, we first separate the NPCS region of each instance. Then, we align the separated regions with the real point cloud to recover the final pose and size. Experimental results on the GAPart dataset demonstrate the pose estimation capabilities of our proposed single-shot method. We also deploy our synthetically-trained model in a real-world setting, providing real-time visual feedback at 200Hz, enabling a physical Kinova robot to interact with unseen articulated objects. This showcases the utility and effectiveness of our proposed method.
* To appear in ICRA 2025
Via

Jun 06, 2025
Abstract:Traditional SLAM algorithms are excellent at camera tracking but might generate lower resolution and incomplete 3D maps. Recently, Gaussian Splatting (GS) approaches have emerged as an option for SLAM with accurate, dense 3D map building. However, existing GS-based SLAM methods rely on per-scene optimization which is time-consuming and does not generalize to diverse scenes well. In this work, we introduce the first generalizable GS-based semantic SLAM algorithm that incrementally builds and updates a 3D scene representation from an RGB-D video stream using a learned generalizable network. Our approach starts from an RGB-D image recognition backbone to predict the Gaussian parameters from every downsampled and backprojected image location. Additionally, we seamlessly integrate 3D semantic segmentation into our GS framework, bridging 3D mapping and recognition through a shared backbone. To correct localization drifting and floaters, we propose to optimize the GS for only 1 iteration following global localization. We demonstrate state-of-the-art semantic SLAM performance on the real-world benchmark ScanNet with an order of magnitude fewer Gaussians compared to other recent GS-based methods, and showcase our model's generalization capability through zero-shot transfer to the NYUv2 and TUM RGB-D datasets.
* 13 pages, 6 figures
Via

May 26, 2025
Abstract:Recent advancements in Neural Radiance Fields (NeRF) and 3D Gaussian-based Simultaneous Localization and Mapping (SLAM) methods have demonstrated exceptional localization precision and remarkable dense mapping performance. However, dynamic objects introduce critical challenges by disrupting scene consistency, leading to tracking drift and mapping artifacts. Existing methods that employ semantic segmentation or object detection for dynamic identification and filtering typically rely on predefined categorical priors, while discarding dynamic scene information crucial for robotic applications such as dynamic obstacle avoidance and environmental interaction. To overcome these challenges, we propose ADD-SLAM: an Adaptive Dynamic Dense SLAM framework based on Gaussian splitting. We design an adaptive dynamic identification mechanism grounded in scene consistency analysis, comparing geometric and textural discrepancies between real-time observations and historical maps. Ours requires no predefined semantic category priors and adaptively discovers scene dynamics. Precise dynamic object recognition effectively mitigates interference from moving targets during localization. Furthermore, we propose a dynamic-static separation mapping strategy that constructs a temporal Gaussian model to achieve online incremental dynamic modeling. Experiments conducted on multiple dynamic datasets demonstrate our method's flexible and accurate dynamic segmentation capabilities, along with state-of-the-art performance in both localization and mapping.
Via

May 29, 2025
Abstract:Coral reefs, crucial for sustaining marine biodiversity and ecological processes (e.g., nutrient cycling, habitat provision), face escalating threats, underscoring the need for efficient monitoring. Coral reef ecological monitoring faces dual challenges of low efficiency in manual analysis and insufficient segmentation accuracy in complex underwater scenarios. This study develops the YH-MINER system, establishing an intelligent framework centered on the Multimodal Large Model (MLLM) for "object detection-semantic segmentation-prior input". The system uses the object detection module (mAP@0.5=0.78) to generate spatial prior boxes for coral instances, driving the segment module to complete pixel-level segmentation in low-light and densely occluded scenarios. The segmentation masks and finetuned classification instructions are fed into the Qwen2-VL-based multimodal model as prior inputs, achieving a genus-level classification accuracy of 88% and simultaneously extracting core ecological metrics. Meanwhile, the system retains the scalability of the multimodal model through standardized interfaces, laying a foundation for future integration into multimodal agent-based underwater robots and supporting the full-process automation of "image acquisition-prior generation-real-time analysis".
Via

May 21, 2025
Abstract:Large-scale pretrained vision backbones have transformed computer vision by providing powerful feature extractors that enable various downstream tasks, including training-free approaches like visual prompting for semantic segmentation. Despite their success in generic scenarios, these models often fall short when applied to specialized technical domains where the visual features differ significantly from their training distribution. To bridge this gap, we introduce VP Lab, a comprehensive iterative framework that enhances visual prompting for robust segmentation model development. At the core of VP Lab lies E-PEFT, a novel ensemble of parameter-efficient fine-tuning techniques specifically designed to adapt our visual prompting pipeline to specific domains in a manner that is both parameter- and data-efficient. Our approach not only surpasses the state-of-the-art in parameter-efficient fine-tuning for the Segment Anything Model (SAM), but also facilitates an interactive, near-real-time loop, allowing users to observe progressively improving results as they experiment within the framework. By integrating E-PEFT with visual prompting, we demonstrate a remarkable 50\% increase in semantic segmentation mIoU performance across various technical datasets using only 5 validated images, establishing a new paradigm for fast, efficient, and interactive model deployment in new, challenging domains. This work comes in the form of a demonstration.
Via
