Diffusion models are a powerful class of generative models which simulate stochastic differential equations (SDEs) to generate data from noise. Although diffusion models have achieved remarkable progress in recent years, they have limitations in the unpaired image-to-image translation tasks due to the Gaussian prior assumption. Schr\"odinger Bridge (SB), which learns an SDE to translate between two arbitrary distributions, have risen as an attractive solution to this problem. However, none of SB models so far have been successful at unpaired translation between high-resolution images. In this work, we propose the Unpaired Neural Schr\"odinger Bridge (UNSB), which combines SB with adversarial training and regularization to learn a SB between unpaired data. We demonstrate that UNSB is scalable, and that it successfully solves various unpaired image-to-image translation tasks. Code: \url{https://github.com/cyclomon/UNSB}
Recently, image-to-image translation methods based on contrastive learning achieved state-of-the-art results in many tasks. However, the negatives are sampled from the input feature spaces in the previous work, which makes the negatives lack diversity. Moreover, in the latent space of the embedings,the previous methods ignore domain consistency between the generated image and the real images of target domain. In this paper, we propose a novel contrastive learning framework for unpaired image-to-image translation, called MCCUT. We utilize the multi-crop views to generate the negatives via the center-crop and the random-crop, which can improve the diversity of negatives and meanwhile increase the quality of negatives. To constrain the embedings in the deep feature space,, we formulate a new domain consistency loss function, which encourages the generated images to be close to the real images in the embedding space of same domain. Furthermore, we present a dual coordinate channel attention network by embedding positional information into SENet, which called DCSE module. We employ the DCSE module in the design of generator, which makes the generator pays more attention to channels with greater weight. In many image-to-image translation tasks, our method achieves state-of-the-art results, and the advantages of our method have been proved through extensive comparison experiments and ablation research.
Generally, image-to-image translation (i2i) methods aim at learning mappings across domains with the assumption that the images used for translation share content (e.g., pose) but have their own domain-specific information (a.k.a. style). Conditioned on a target image, such methods extract the target style and combine it with the source image content, keeping coherence between the domains. In our proposal, we depart from this traditional view and instead consider the scenario where the target domain is represented by a very low-resolution (LR) image, proposing a domain-agnostic i2i method for fine-grained problems, where the domains are related. More specifically, our domain-agnostic approach aims at generating an image that combines visual features from the source image with low-frequency information (e.g. pose, color) of the LR target image. To do so, we present a novel approach that relies on training the generative model to produce images that both share distinctive information of the associated source image and correctly match the LR target image when downscaled. We validate our method on the CelebA-HQ and AFHQ datasets by demonstrating improvements in terms of visual quality. Qualitative and quantitative results show that when dealing with intra-domain image translation, our method generates realistic samples compared to state-of-the-art methods such as StarGAN v2. Ablation studies also reveal that our method is robust to changes in color, it can be applied to out-of-distribution images, and it allows for manual control over the final results.
In this paper, we tackle the challenging task of Panoramic Image-to-Image translation (Pano-I2I) for the first time. This task is difficult due to the geometric distortion of panoramic images and the lack of a panoramic image dataset with diverse conditions, like weather or time. To address these challenges, we propose a panoramic distortion-aware I2I model that preserves the structure of the panoramic images while consistently translating their global style referenced from a pinhole image. To mitigate the distortion issue in naive 360 panorama translation, we adopt spherical positional embedding to our transformer encoders, introduce a distortion-free discriminator, and apply sphere-based rotation for augmentation and its ensemble. We also design a content encoder and a style encoder to be deformation-aware to deal with a large domain gap between panoramas and pinhole images, enabling us to work on diverse conditions of pinhole images. In addition, considering the large discrepancy between panoramas and pinhole images, our framework decouples the learning procedure of the panoramic reconstruction stage from the translation stage. We show distinct improvements over existing I2I models in translating the StreetLearn dataset in the daytime into diverse conditions. The code will be publicly available online for our community.
Deep generative models (DGMs) and their conditional counterparts provide a powerful ability for general-purpose generative modeling of data distributions. However, it remains challenging for existing methods to address advanced conditional generative problems without annotations, which can enable multiple applications like image-to-image translation and image editing. We present a unified Bayesian framework for such problems, which introduces an inference stage on latent variables within the learning process. In particular, we propose a variational Bayesian image translation network (VBITN) that enables multiple image translation and editing tasks. Comprehensive experiments show the effectiveness of our method on unsupervised image-to-image translation, and demonstrate the novel advanced capabilities for semantic editing and mixed domain translation.
Existing image-to-image(I2I) translation methods achieve state-of-the-art performance by incorporating the patch-wise contrastive learning into Generative Adversarial Networks. However, patch-wise contrastive learning only focuses on the local content similarity but neglects the global structure constraint, which affects the quality of the generated images. In this paper, we propose a new unpaired I2I translation framework based on dual contrastive regularization and spectral normalization, namely SN-DCR. To maintain consistency of the global structure and texture, we design the dual contrastive regularization using different feature spaces respectively. In order to improve the global structure information of the generated images, we formulate a semantically contrastive loss to make the global semantic structure of the generated images similar to the real images from the target domain in the semantic feature space. We use Gram Matrices to extract the style of texture from images. Similarly, we design style contrastive loss to improve the global texture information of the generated images. Moreover, to enhance the stability of model, we employ the spectral normalized convolutional network in the design of our generator. We conduct the comprehensive experiments to evaluate the effectiveness of SN-DCR, and the results prove that our method achieves SOTA in multiple tasks.
In the field of Image-to-Image (I2I) translation, ensuring consistency between input images and their translated results is a key requirement for producing high-quality and desirable outputs. Previous I2I methods have relied on result consistency, which enforces consistency between the translated results and the ground truth output, to achieve this goal. However, result consistency is limited in its ability to handle complex and unseen attribute changes in translation tasks. To address this issue, we introduce a transition-aware approach to I2I translation, where the data translation mapping is explicitly parameterized with a transition variable, allowing for the modelling of unobserved translations triggered by unseen transitions. Furthermore, we propose the use of transition consistency, defined on the transition variable, to enable regularization of consistency on unobserved translations, which is omitted in previous works. Based on these insights, we present Unseen Transition Suss GAN (UTSGAN), a generative framework that constructs a manifold for the transition with a stochastic transition encoder and coherently regularizes and generalizes result consistency and transition consistency on both training and unobserved translations with tailor-designed constraints. Extensive experiments on four different I2I tasks performed on five different datasets demonstrate the efficacy of our proposed UTSGAN in performing consistent translations.
Semantic Image Synthesis (SIS) is a subclass of image-to-image translation where a semantic layout is used to generate a photorealistic image. State-of-the-art conditional Generative Adversarial Networks (GANs) need a huge amount of paired data to accomplish this task while generic unpaired image-to-image translation frameworks underperform in comparison, because they color-code semantic layouts and learn correspondences in appearance instead of semantic content. Starting from the assumption that a high quality generated image should be segmented back to its semantic layout, we propose a new Unsupervised paradigm for SIS (USIS) that makes use of a self-supervised segmentation loss and whole image wavelet based discrimination. Furthermore, in order to match the high-frequency distribution of real images, a novel generator architecture in the wavelet domain is proposed. We test our methodology on 3 challenging datasets and demonstrate its ability to bridge the performance gap between paired and unpaired models.
Image-to-image translation (I2I) methods allow the generation of artificial images that share the content of the original image but have a different style. With the advances in Generative Adversarial Networks (GANs)-based methods, I2I methods enabled the generation of artificial images that are indistinguishable from natural images. Recently, I2I methods were also employed in histopathology for generating artificial images of in silico stained tissues from a different type of staining. We refer to this process as stain transfer. The number of I2I variants is constantly increasing, which makes a well justified choice of the most suitable I2I methods for stain transfer challenging. In our work, we compare twelve stain transfer approaches, three of which are based on traditional and nine on GAN-based image processing methods. The analysis relies on complementary quantitative measures for the quality of image translation, the assessment of the suitability for deep learning-based tissue grading, and the visual evaluation by pathologists. Our study highlights the strengths and weaknesses of the stain transfer approaches, thereby allowing a rational choice of the underlying I2I algorithms. Code, data, and trained models for stain transfer between H&E and Masson's Trichrome staining will be made available online.