Topic:Image To Image Translation
What is Image To Image Translation? Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Papers and Code
Sep 04, 2024
Abstract:LLMs demonstrate an uncanny ability to process unstructured data, and as such, have the potential to go beyond search and run complex, semantic analyses at scale. We describe the design of an unstructured analytics system, Aryn, and the tenets and use cases that motivate its design. With Aryn, users can specify queries in natural language and the system automatically determines a semantic plan and executes it to compute an answer from a large collection of unstructured documents using LLMs. At the core of Aryn is Sycamore, a declarative document processing engine, built using Ray, that provides a reliable distributed abstraction called DocSets. Sycamore allows users to analyze, enrich, and transform complex documents at scale. Aryn also comprises Luna, a query planner that translates natural language queries to Sycamore scripts, and the Aryn Partitioner, which takes raw PDFs and document images, and converts them to DocSets for downstream processing. Using Aryn, we demonstrate a real world use case for analyzing accident reports from the National Transportation Safety Board (NTSB), and discuss some of the major challenges we encountered in deploying Aryn in the wild.
* 6 pages, 3 figures, fixed typos
Via
Sep 03, 2024
Abstract:Adverse conditions like snow, rain, nighttime, and fog, pose challenges for autonomous driving perception systems. Existing methods have limited effectiveness in improving essential computer vision tasks, such as semantic segmentation, and often focus on only one specific condition, such as removing rain or translating nighttime images into daytime ones. To address these limitations, we propose a method to improve the visual quality and clarity degraded by such adverse conditions. Our method, AllWeather-Net, utilizes a novel hierarchical architecture to enhance images across all adverse conditions. This architecture incorporates information at three semantic levels: scene, object, and texture, by discriminating patches at each level. Furthermore, we introduce a Scaled Illumination-aware Attention Mechanism (SIAM) that guides the learning towards road elements critical for autonomous driving perception. SIAM exhibits robustness, remaining unaffected by changes in weather conditions or environmental scenes. AllWeather-Net effectively transforms images into normal weather and daytime scenes, demonstrating superior image enhancement results and subsequently enhancing the performance of semantic segmentation, with up to a 5.3% improvement in mIoU in the trained domain. We also show our model's generalization ability by applying it to unseen domains without re-training, achieving up to 3.9% mIoU improvement. Code can be accessed at: https://github.com/Jumponthemoon/AllWeatherNet.
Via
Sep 04, 2024
Abstract:Craniofacial anomalies indicate early developmental disturbances and are usually linked to many genetic syndromes. Early diagnosis is critical, yet ultrasound (US) examinations often fail to identify these features. This study presents an AI-driven tool to assist clinicians in standardizing fetal facial axes/planes in 3D US, reducing sonographer workload and facilitating the facial evaluation. Our network, structured into three blocks-feature extractor, rotation and translation regression, and spatial transformer-processes three orthogonal 2D slices to estimate the necessary transformations for standardizing the facial planes in the 3D US. These transformations are applied to the original 3D US using a differentiable module (the spatial transformer block), yielding a standardized 3D US and the corresponding 2D facial standard planes. The dataset used consists of 1180 fetal facial 3D US images acquired between weeks 20 and 35 of gestation. Results show that our network considerably reduces inter-observer rotation variability in the test set, with a mean geodesic angle difference of 14.12$^{\circ}$ $\pm$ 18.27$^{\circ}$ and an Euclidean angle error of 7.45$^{\circ}$ $\pm$ 14.88$^{\circ}$. These findings demonstrate the network's ability to effectively standardize facial axes, crucial for consistent fetal facial assessments. In conclusion, the proposed network demonstrates potential for improving the consistency and accuracy of fetal facial assessments in clinical settings, facilitating early evaluation of craniofacial anomalies.
Via
Sep 01, 2024
Abstract:We introduce Seed-to-Seed Translation (StS), a novel approach for Image-to-Image Translation using diffusion models (DMs), aimed at translations that require close adherence to the structure of the source image. In contrast to existing methods that modify images during the diffusion sampling process, we leverage the semantic information encoded within the space of inverted seeds of a pretrained DM, dubbed as the seed-space. We demonstrate that inverted seeds can be used for discriminative tasks, and can also be manipulated to achieve desired transformations in an unpaired image-to-image translation setting. Our method involves training an sts-GAN, an unpaired translation model between source and target seeds, based on CycleGAN. The final translated images are obtained by initiating the DM's sampling process from the translated seeds. A ControlNet is used to ensure the structural preservation of the input image. We demonstrate the effectiveness of our approach for the task of translating automotive scenes, showcasing superior performance compared to existing GAN-based and diffusion-based methods, as well as for several other unpaired image translation tasks. Our approach offers a fresh perspective on leveraging the semantic information encoded within the seed-space of pretrained DMs for effective image editing and manipulation.
Via
Sep 04, 2024
Abstract:Water diffusion gives rise to micrometer-scale sensitivity of diffusion MRI (dMRI) to cellular-level tissue structure. The advent of precision medicine and quantitative imaging hinges on revealing the information content of dMRI, and providing its parsimonious basis- and hardware-independent "fingerprint". Here we reveal the geometry of a multi-dimensional dMRI signal, classify all 21 invariants of diffusion and covariance tensors in terms of irreducible representations of the group of rotations, and relate them to tissue properties. Previously studied dMRI contrasts are expressed via 7 invariants, while the remaining 14 provide novel complementary information. We design acquisitions based on icosahedral vertices guaranteeing minimal number of measurements to determine 3-4 most used invariants in only 1-2 minutes for the whole brain. Representing dMRI signals via scalar invariant maps with definite symmetries will underpin machine learning classifiers of brain pathology, development, and aging, while fast protocols will enable translation of advanced dMRI into clinical practice.
Via
Sep 01, 2024
Abstract:Breast cancer is a highly fatal disease among cancers in women, and early detection is crucial for treatment. HER2 status, a valuable diagnostic marker based on Immunohistochemistry (IHC) staining, is instrumental in determining breast cancer status. The high cost of IHC staining and the ubiquity of Hematoxylin and Eosin (H&E) staining make the conversion from H&E to IHC staining essential. In this article, we propose a destain-restain framework for converting H&E staining to IHC staining, leveraging the characteristic that H&E staining and IHC staining of the same tissue sections share the Hematoxylin channel. We further design loss functions specifically for Hematoxylin and Diaminobenzidin (DAB) channels to generate IHC images exploiting insights from separated staining channels. Beyond the benchmark metrics on BCI contest, we have developed semantic information metrics for the HER2 level. The experimental results demonstrated that our method outperforms previous open-sourced methods in terms of image intrinsic property and semantic information.
Via
Sep 03, 2024
Abstract:The considerable body of data available for evaluating biometric recognition systems in Research and Development (R\&D) environments has contributed to the increasingly common problem of target performance mismatch. Biometric algorithms are frequently tested against data that may not reflect the real world applications they target. From a Testing and Evaluation (T\&E) standpoint, this domain mismatch causes difficulty assessing when improvements in State-of-the-Art (SOTA) research actually translate to improved applied outcomes. This problem can be addressed with thoughtful preparation of data and experimental methods to reflect specific use-cases and scenarios. To that end, this paper evaluates research solutions for identifying individuals at ranges and altitudes, which could support various application areas such as counterterrorism, protection of critical infrastructure facilities, military force protection, and border security. We address challenges including image quality issues and reliance on face recognition as the sole biometric modality. By fusing face and body features, we propose developing robust biometric systems for effective long-range identification from both the ground and steep pitch angles. Preliminary results show promising progress in whole-body recognition. This paper presents these early findings and discusses potential future directions for advancing long-range biometric identification systems based on mission-driven metrics.
Via
Aug 31, 2024
Abstract:Scaling laws dictate that the performance of AI models is proportional to the amount of available data. Data augmentation is a promising solution to expanding the dataset size. Traditional approaches focused on augmentation using rotation, translation, and resizing. Recent approaches use generative AI models to improve dataset diversity. However, the generative methods struggle with issues such as subject corruption and the introduction of irrelevant artifacts. In this paper, we propose the Automated Generative Data Augmentation (AGA). The framework combines the utility of large language models (LLMs), diffusion models, and segmentation models to augment data. AGA preserves foreground authenticity while ensuring background diversity. Specific contributions include: i) segment and superclass based object extraction, ii) prompt diversity with combinatorial complexity using prompt decomposition, and iii) affine subject manipulation. We evaluate AGA against state-of-the-art (SOTA) techniques on three representative datasets, ImageNet, CUB, and iWildCam. The experimental evaluation demonstrates an accuracy improvement of 15.6% and 23.5% for in and out-of-distribution data compared to baseline models, respectively. There is also a 64.3% improvement in SIC score compared to the baselines.
* 19 pages, 15 figures, 4 tables
Via
Aug 26, 2024
Abstract:The current mainstream multi-modal medical image-to-image translation methods face a contradiction. Supervised methods with outstanding performance rely on pixel-wise aligned training data to constrain the model optimization. However, obtaining pixel-wise aligned multi-modal medical image datasets is challenging. Unsupervised methods can be trained without paired data, but their reliability cannot be guaranteed. At present, there is no ideal multi-modal medical image-to-image translation method that can generate reliable translation results without the need for pixel-wise aligned data. This work aims to develop a novel medical image-to-image translation model that is independent of pixel-wise aligned data (MITIA), enabling reliable multi-modal medical image-to-image translation under the condition of misaligned training data. The proposed MITIA model utilizes a prior extraction network composed of a multi-modal medical image registration module and a multi-modal misalignment error detection module to extract pixel-level prior information from training data with misalignment errors to the largest extent. The extracted prior information is then used to construct a regularization term to constrain the optimization of the unsupervised cycle-consistent GAN model, restricting its solution space and thereby improving the performance and reliability of the generator. We trained the MITIA model using six datasets containing different misalignment errors and two well-aligned datasets. Subsequently, we compared the proposed method with six other state-of-the-art image-to-image translation methods. The results of both quantitative analysis and qualitative visual inspection indicate that MITIA achieves superior performance compared to the competing state-of-the-art methods, both on misaligned data and aligned data.
* This paper has been accepted as a research article by Medical Physics
Via
Aug 26, 2024
Abstract:Infrared imaging offers resilience against changing lighting conditions by capturing object temperatures. Yet, in few scenarios, its lack of visual details compared to daytime visible images, poses a significant challenge for human and machine interpretation. This paper proposes a novel diffusion method, dubbed Temporally Consistent Patch Diffusion Models (TC-DPM), for infrared-to-visible video translation. Our method, extending the Patch Diffusion Model, consists of two key components. Firstly, we propose a semantic-guided denoising, leveraging the strong representations of foundational models. As such, our method faithfully preserves the semantic structure of generated visible images. Secondly, we propose a novel temporal blending module to guide the denoising trajectory, ensuring the temporal consistency between consecutive frames. Experiment shows that TC-PDM outperforms state-of-the-art methods by 35.3% in FVD for infrared-to-visible video translation and by 6.1% in AP50 for day-to-night object detection. Our code is publicly available at https://github.com/dzungdoan6/tc-pdm
* Technical report
Via