Topic:Image To Image Translation
What is Image To Image Translation? Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Papers and Code
Oct 01, 2024
Abstract:NECOMIMI (NEural-COgnitive MultImodal EEG-Informed Image Generation with Diffusion Models) introduces a novel framework for generating images directly from EEG signals using advanced diffusion models. Unlike previous works that focused solely on EEG-image classification through contrastive learning, NECOMIMI extends this task to image generation. The proposed NERV EEG encoder demonstrates state-of-the-art (SoTA) performance across multiple zero-shot classification tasks, including 2-way, 4-way, and 200-way, and achieves top results in our newly proposed Category-based Assessment Table (CAT) Score, which evaluates the quality of EEG-generated images based on semantic concepts. A key discovery of this work is that the model tends to generate abstract or generalized images, such as landscapes, rather than specific objects, highlighting the inherent challenges of translating noisy and low-resolution EEG data into detailed visual outputs. Additionally, we introduce the CAT Score as a new metric tailored for EEG-to-image evaluation and establish a benchmark on the ThingsEEG dataset. This study underscores the potential of EEG-to-image generation while revealing the complexities and challenges that remain in bridging neural activity with visual representation.
Via
Oct 01, 2024
Abstract:Radiology reports often remain incomprehensible to patients, undermining patient-centered care. We present ReXplain (Radiology eXplanation), an innovative AI-driven system that generates patient-friendly video reports for radiology findings. ReXplain uniquely integrates a large language model for text simplification, an image segmentation model for anatomical region identification, and an avatar generation tool, producing comprehensive explanations with plain language, highlighted imagery, and 3D organ renderings. Our proof-of-concept study with five board-certified radiologists indicates that ReXplain could accurately deliver radiological information and effectively simulate one-on-one consultations. This work demonstrates a new paradigm in AI-assisted medical communication, potentially improving patient engagement and satisfaction in radiology care, and opens new avenues for research in multimodal medical communication.
* 13 pages
Via
Sep 30, 2024
Abstract:Recent advances in deep learning-based image reconstruction techniques have led to significant progress in phase retrieval using digital in-line holographic microscopy (DIHM). However, existing deep learning-based phase retrieval methods have technical limitations in generalization performance and three-dimensional (3D) morphology reconstruction from a single-shot hologram of biological cells. In this study, we propose a novel deep learning model, named MorpHoloNet, for single-shot reconstruction of 3D morphology by integrating physics-driven and coordinate-based neural networks. By simulating the optical diffraction of coherent light through a 3D phase shift distribution, the proposed MorpHoloNet is optimized by minimizing the loss between the simulated and input holograms on the sensor plane. Compared to existing DIHM methods that face challenges with twin image and phase retrieval problems, MorpHoloNet enables direct reconstruction of 3D complex light field and 3D morphology of a test sample from its single-shot hologram without requiring multiple phase-shifted holograms or angle scanning. The performance of the proposed MorpHoloNet is validated by reconstructing 3D morphologies and refractive index distributions from synthetic holograms of ellipsoids and experimental holograms of biological cells. The proposed deep learning model is utilized to reconstruct spatiotemporal variations in 3D translational and rotational behaviors and morphological deformations of biological cells from consecutive single-shot holograms captured using DIHM. MorpHoloNet would pave the way for advancing label-free, real-time 3D imaging and dynamic analysis of biological cells under various cellular microenvironments in biomedical and engineering fields.
* 35 pages, 7 figures, 1 table
Via
Sep 26, 2024
Abstract:Image-to-Image Translation is a vital area of computer vision that focuses on transforming images from one visual domain to another while preserving their core content and structure. However, this field faces two major challenges: first, the data from the two domains are often unpaired, making it difficult to train generative adversarial networks effectively; second, existing methods tend to produce artifacts or hallucinations during image generation, leading to a decline in image quality. To address these issues, this paper proposes an enhanced unsupervised image-to-image translation method based on the Contrastive Unpaired Translation (CUT) model, incorporating Histogram of Oriented Gradients (HOG) features. This novel approach ensures the preservation of the semantic structure of images, even without semantic labels, by minimizing the loss between the HOG features of input and generated images. The method was tested on translating synthetic game environments from GTA5 dataset to realistic urban scenes in cityscapes dataset, demonstrating significant improvements in reducing hallucinations and enhancing image quality.
* Critical Errors in Data or Analysis
Via
Sep 27, 2024
Abstract:Cone Beam Computed Tomography (CBCT) finds diverse applications in medicine. Ensuring high image quality in CBCT scans is essential for accurate diagnosis and treatment delivery. Yet, the susceptibility of CBCT images to noise and artifacts undermines both their usefulness and reliability. Existing methods typically address CBCT artifacts through image-to-image translation approaches. These methods, however, are limited by the artifact types present in the training data, which may not cover the complete spectrum of CBCT degradations stemming from variations in imaging protocols. Gathering additional data to encompass all possible scenarios can often pose a challenge. To address this, we present SinoSynth, a physics-based degradation model that simulates various CBCT-specific artifacts to generate a diverse set of synthetic CBCT images from high-quality CT images without requiring pre-aligned data. Through extensive experiments, we demonstrate that several different generative networks trained on our synthesized data achieve remarkable results on heterogeneous multi-institutional datasets, outperforming even the same networks trained on actual data. We further show that our degradation model conveniently provides an avenue to enforce anatomical constraints in conditional generative models, yielding high-quality and structure-preserving synthetic CT images.
* MICCAI 2024
Via
Sep 26, 2024
Abstract:Unsupervised domain adaptation (UDA) is essential for medical image segmentation, especially in cross-modality data scenarios. UDA aims to transfer knowledge from a labeled source domain to an unlabeled target domain, thereby reducing the dependency on extensive manual annotations. This paper presents DRL-STNet, a novel framework for cross-modality medical image segmentation that leverages generative adversarial networks (GANs), disentangled representation learning (DRL), and self-training (ST). Our method leverages DRL within a GAN to translate images from the source to the target modality. Then, the segmentation model is initially trained with these translated images and corresponding source labels and then fine-tuned iteratively using a combination of synthetic and real images with pseudo-labels and real labels. The proposed framework exhibits superior performance in abdominal organ segmentation on the FLARE challenge dataset, surpassing state-of-the-art methods by 11.4% in the Dice similarity coefficient and by 13.1% in the Normalized Surface Dice metric, achieving scores of 74.21% and 80.69%, respectively. The average running time is 41 seconds, and the area under the GPU memory-time curve is 11,292 MB. These results indicate the potential of DRL-STNet for enhancing cross-modality medical image segmentation tasks.
* MICCAI 2024 Challenge, FLARE Challenge, Unsupervised domain
adaptation, Organ segmentation, Feature disentanglement, Self-training
Via
Sep 25, 2024
Abstract:This paper proposes Pix2Next, a novel image-to-image translation framework designed to address the challenge of generating high-quality Near-Infrared (NIR) images from RGB inputs. Our approach leverages a state-of-the-art Vision Foundation Model (VFM) within an encoder-decoder architecture, incorporating cross-attention mechanisms to enhance feature integration. This design captures detailed global representations and preserves essential spectral characteristics, treating RGB-to-NIR translation as more than a simple domain transfer problem. A multi-scale PatchGAN discriminator ensures realistic image generation at various detail levels, while carefully designed loss functions couple global context understanding with local feature preservation. We performed experiments on the RANUS dataset to demonstrate Pix2Next's advantages in quantitative metrics and visual quality, improving the FID score by 34.81% compared to existing methods. Furthermore, we demonstrate the practical utility of Pix2Next by showing improved performance on a downstream object detection task using generated NIR data to augment limited real NIR datasets. The proposed approach enables the scaling up of NIR datasets without additional data acquisition or annotation efforts, potentially accelerating advancements in NIR-based computer vision applications.
* 19 pages,12 figures
Via
Sep 26, 2024
Abstract:Scene text recognition in low-resource languages frequently faces challenges due to the limited availability of training datasets derived from real-world scenes. This study proposes a novel approach that generates text images in low-resource languages by emulating the style of real text images from high-resource languages. Our approach utilizes a diffusion model that is conditioned on binary states: ``synthetic'' and ``real.'' The training of this model involves dual translation tasks, where it transforms plain text images into either synthetic or real text images, based on the binary states. This approach not only effectively differentiates between the two domains but also facilitates the model's explicit recognition of characters in the target language. Furthermore, to enhance the accuracy and variety of generated text images, we introduce two guidance techniques: Fidelity-Diversity Balancing Guidance and Fidelity Enhancement Guidance. Our experimental results demonstrate that the text images generated by our proposed framework can significantly improve the performance of scene text recognition models for low-resource languages.
* 23 pages, 11 figures
Via
Sep 27, 2024
Abstract:Medical imaging is spearheading the AI transformation of healthcare. Performance reporting is key to determine which methods should be translated into clinical practice. Frequently, broad conclusions are simply derived from mean performance values. In this paper, we argue that this common practice is often a misleading simplification as it ignores performance variability. Our contribution is threefold. (1) Analyzing all MICCAI segmentation papers (n = 221) published in 2023, we first observe that more than 50% of papers do not assess performance variability at all. Moreover, only one (0.5%) paper reported confidence intervals (CIs) for model performance. (2) To address the reporting bottleneck, we show that the unreported standard deviation (SD) in segmentation papers can be approximated by a second-order polynomial function of the mean Dice similarity coefficient (DSC). Based on external validation data from 56 previous MICCAI challenges, we demonstrate that this approximation can accurately reconstruct the CI of a method using information provided in publications. (3) Finally, we reconstructed 95% CIs around the mean DSC of MICCAI 2023 segmentation papers. The median CI width was 0.03 which is three times larger than the median performance gap between the first and second ranked method. For more than 60% of papers, the mean performance of the second-ranked method was within the CI of the first-ranked method. We conclude that current publications typically do not provide sufficient evidence to support which models could potentially be translated into clinical practice.
* Paper accepted at MICCAI 2024 conference
Via
Sep 25, 2024
Abstract:Depth sensing is an important problem for 3D vision-based robotics. Yet, a real-world active stereo or ToF depth camera often produces noisy and incomplete depth which bottlenecks robot performances. In this work, we propose D3RoMa, a learning-based depth estimation framework on stereo image pairs that predicts clean and accurate depth in diverse indoor scenes, even in the most challenging scenarios with translucent or specular surfaces where classical depth sensing completely fails. Key to our method is that we unify depth estimation and restoration into an image-to-image translation problem by predicting the disparity map with a denoising diffusion probabilistic model. At inference time, we further incorporated a left-right consistency constraint as classifier guidance to the diffusion process. Our framework combines recently advanced learning-based approaches and geometric constraints from traditional stereo vision. For model training, we create a large scene-level synthetic dataset with diverse transparent and specular objects to compensate for existing tabletop datasets. The trained model can be directly applied to real-world in-the-wild scenes and achieve state-of-the-art performance in multiple public depth estimation benchmarks. Further experiments in real environments show that accurate depth prediction significantly improves robotic manipulation in various scenarios.
Via