Robust 3D point cloud classification is often pursued by scaling up backbones or relying on specialized data augmentation. We instead ask whether structural abstraction alone can improve robustness, and study a simple topology-inspired decomposition based on the Mapper algorithm. We propose Mapper-GIN, a lightweight pipeline that partitions a point cloud into overlapping regions using Mapper (PCA lens, cubical cover, and followed by density-based clustering), constructs a region graph from their overlaps, and performs graph classification with a Graph Isomorphism Network. On the corruption benchmark ModelNet40-C, Mapper-GIN achieves competitive and stable accuracy under Noise and Transformation corruptions with only 0.5M parameters. In contrast to prior approaches that require heavier architectures or additional mechanisms to gain robustness, Mapper-GIN attains strong corruption robustness through simple region-level graph abstraction and GIN message passing. Overall, our results suggest that region-graph structure offers an efficient and interpretable source of robustness for 3D visual recognition.
Despite recent progress in calibration-free monocular SLAM via 3D vision foundation models, scale drift remains severe on long sequences. Motion-agnostic partitioning breaks contextual coherence and causes zero-motion drift, while conventional geometric alignment is computationally expensive. To address these issues, we propose VGGT-Motion, a calibration-free SLAM system for efficient and robust global consistency over kilometer-scale trajectories. Specifically, we first propose a motion-aware submap construction mechanism that uses optical flow to guide adaptive partitioning, prune static redundancy, and encapsulate turns for stable local geometry. We then design an anchor-driven direct Sim(3) registration strategy. By exploiting context-balanced anchors, it achieves search-free, pixel-wise dense alignment and efficient loop closure without costly feature matching. Finally, a lightweight submap-level pose graph optimization enforces global consistency with linear complexity, enabling scalable long-range operation. Experiments show that VGGT-Motion markedly improves trajectory accuracy and efficiency, achieving state-of-the-art performance in zero-shot, long-range calibration-free monocular SLAM.
Exact inference in complex probabilistic models often incurs prohibitive computational costs. This challenge is particularly acute for autonomous agents in dynamic environments that require frequent, real-time belief updates. Existing methods are often inefficient for ongoing reasoning, as they re-evaluate the entire model upon any change, failing to exploit that real-world information streams have heterogeneous update rates. To address this, we approach the problem from a reactive, asynchronous, probabilistic reasoning perspective. We first introduce Resin (Reactive Signal Inference), a probabilistic programming language that merges probabilistic logic with reactive programming. Furthermore, to provide efficient and exact semantics for Resin, we propose Reactive Circuits (RCs). Formulated as a meta-structure over Algebraic Circuits and asynchronous data streams, RCs are time-dynamic Directed Acyclic Graphs that autonomously adapt themselves based on the volatility of input signals. In high-fidelity drone swarm simulations, our approach achieves several orders of magnitude of speedup over frequency-agnostic inference. We demonstrate that RCs' structural adaptations successfully capture environmental dynamics, significantly reducing latency and facilitating reactive real-time reasoning. By partitioning computations based on the estimated Frequency of Change in the asynchronous inputs, large inference tasks can be decomposed into individually memoized sub-problems. This ensures that only the specific components of a model affected by new information are re-evaluated, drastically reducing redundant computation in streaming contexts.
This paper tackles a critical bottleneck in Super-Structure-based divide-and-conquer causal discovery: the high computational cost of constructing accurate Super-Structures--particularly when conditional independence (CI) tests are expensive and domain knowledge is unavailable. We propose a novel, lightweight framework that relaxes the strict requirements on Super-Structure construction while preserving the algorithmic benefits of divide-and-conquer. By integrating weakly constrained Super-Structures with efficient graph partitioning and merging strategies, our approach substantially lowers CI test overhead without sacrificing accuracy. We instantiate the framework in a concrete causal discovery algorithm and rigorously evaluate its components on synthetic data. Comprehensive experiments on Gaussian Bayesian networks, including magic-NIAB, ECOLI70, and magic-IRRI, demonstrate that our method matches or closely approximates the structural accuracy of PC and FCI while drastically reducing the number of CI tests. Further validation on the real-world China Health and Retirement Longitudinal Study (CHARLS) dataset confirms its practical applicability. Our results establish that accurate, scalable causal discovery is achievable even under minimal assumptions about the initial Super-Structure, opening new avenues for applying divide-and-conquer methods to large-scale, knowledge-scarce domains such as biomedical and social science research.
Zero-Shot Object Navigation in unknown environments poses significant challenges for Unmanned Aerial Vehicles (UAVs) due to the conflict between high-level semantic reasoning requirements and limited onboard computational resources. To address this, we present USS-Nav, a lightweight framework that incrementally constructs a Unified Spatio-Semantic scene graph and enables efficient Large Language Model (LLM)-augmented Zero-Shot Object Navigation in unknown environments. Specifically, we introduce an incremental Spatial Connectivity Graph generation method utilizing polyhedral expansion to capture global geometric topology, which is dynamically partitioned into semantic regions via graph clustering. Concurrently, open-vocabulary object semantics are instantiated and anchored to this topology to form a hierarchical environmental representation. Leveraging this hierarchical structure, we present a coarse-to-fine exploration strategy: LLM grounded in the scene graph's semantics to determine global target regions, while a local planner optimizes frontier coverage based on information gain. Experimental results demonstrate that our framework outperforms state-of-the-art methods in terms of computational efficiency and real-time update frequency (15 Hz) on a resource-constrained platform. Furthermore, ablation studies confirm the effectiveness of our framework, showing substantial improvements in Success weighted by Path Length (SPL). The source code will be made publicly available to foster further research.
Cross-partition edges dominate the cost of distributed GNN training: fetching remote features and activations per iteration overwhelms the network as graphs deepen and partition counts grow. Grappa is a distributed GNN training framework that enforces gradient-only communication: during each iteration, partitions train in isolation and exchange only gradients for the global update. To recover accuracy lost to isolation, Grappa (i) periodically repartitions to expose new neighborhoods and (ii) applies a lightweight coverage-corrected gradient aggregation inspired by importance sampling. We prove the corrected estimator is asymptotically unbiased under standard support and boundedness assumptions, and we derive a batch-level variant for compatibility with common deep-learning packages that minimizes mean-squared deviation from the ideal node-level correction. We also introduce a shrinkage version that improves stability in practice. Empirical results on real and synthetic graphs show that Grappa trains GNNs 4 times faster on average (up to 13 times) than state-of-the-art systems, achieves better accuracy especially for deeper models, and sustains training at the trillion-edge scale on commodity hardware. Grappa is model-agnostic, supports full-graph and mini-batch training, and does not rely on high-bandwidth interconnects or caching.
We argue that existing training-free segmentation methods rely on an implicit and limiting assumption, that segmentation is a spectral graph partitioning problem over diffusion-derived affinities. Such approaches, based on global graph partitioning and eigenvector-based formulations of affinity matrices, suffer from several fundamental drawbacks, they require pre-selecting the number of clusters, induce boundary oversmoothing due to spectral relaxation, and remain highly sensitive to noisy or multi-modal affinity distributions. Moreover, many prior works neglect the importance of local neighborhood structure, which plays a crucial role in stabilizing affinity propagation and preserving fine-grained contours. To address these limitations, we reformulate training-free segmentation as a stochastic flow equilibrium problem over diffusion-induced affinity graphs, where segmentation emerges from a stochastic propagation process that integrates global diffusion attention with local neighborhoods extracted from stable diffusion, yielding a sparse yet expressive affinity structure. Building on this formulation, we introduce a Markov propagation scheme that performs random-walk-based label diffusion with an adaptive pruning strategy that suppresses unreliable transitions while reinforcing confident affinity paths. Experiments across seven widely used semantic segmentation benchmarks demonstrate that our method achieves state-of-the-art zero-shot performance, producing sharper boundaries, more coherent regions, and significantly more stable masks compared to prior spectral-clustering-based approaches.
As multimodal agents evolve from passive observers to long-horizon decision-makers, they require memory systems that provide not just information availability but logical verifiability. A fundamental limitation of current architectures is the epistemic asymmetry inherent in probabilistic vision-language models and dense associative memories: they conflate semantic affinity with factual existence and structurally fail to encode negative constraints. To this end, we introduce PolarMem, a training-free Polarized Latent Graph Memory designed to ground agent reasoning in verifiable evidence. PolarMem transforms fuzzy perceptual likelihoods into discrete logical constraints through non-parametric distributional partitioning. Furthermore, it employs a polarized graph topology with orthogonal inhibitory connections to explicitly store verified negation as a primary cognitive state. At inference time, we enforce a logic-dominant retrieval paradigm, suppressing hallucinatory patterns that violate negative constraints. Extensive evaluation across eight frozen Vision--Language Models and six benchmarks demonstrates that PolarMem functions as a robust cognitive system, establishing a foundation for verifiable multimodal agents. Our code is available at https://github.com/czs-ict/PolarMem.
Graph Federated Learning (GFL) enables distributed graph representation learning while protecting the privacy of graph data. However, GFL suffers from heterogeneity arising from diverse node features and structural topologies across multiple clients. To address both types of heterogeneity, we propose a novel graph Federated learning method via Semantic and Structural Alignment (FedSSA), which shares the knowledge of both node features and structural topologies. For node feature heterogeneity, we propose a novel variational model to infer class-wise node distributions, so that we can cluster clients based on inferred distributions and construct cluster-level representative distributions. We then minimize the divergence between local and cluster-level distributions to facilitate semantic knowledge sharing. For structural heterogeneity, we employ spectral Graph Neural Networks (GNNs) and propose a spectral energy measure to characterize structural information, so that we can cluster clients based on spectral energy and build cluster-level spectral GNNs. We then align the spectral characteristics of local spectral GNNs with those of cluster-level spectral GNNs to enable structural knowledge sharing. Experiments on six homophilic and five heterophilic graph datasets under both non-overlapping and overlapping partitioning settings demonstrate that FedSSA consistently outperforms eleven state-of-the-art methods.
Graph Neural Networks (GNNs) have been intensively studied for their expressive representation and learning performance on graph-structured data, enabling effective modeling of complex relational dependencies among nodes and edges in various domains. However, the standalone GNNs can unleash threat surfaces and privacy implications, as some sensitive graph-structured data is collected and processed in a centralized setting. To solve this issue, Federated Graph Neural Networks (FedGNNs) are proposed to facilitate collaborative learning over decentralized local graph data, aiming to preserve user privacy. Yet, emerging research indicates that even in these settings, shared model updates, particularly gradients, can unintentionally leak sensitive information of local users. Numerous privacy inference attacks have been explored in traditional federated learning and extended to graph settings, but the problem of label distribution inference in FedGNNs remains largely underexplored. In this work, we introduce Fed-Listing (Federated Label Distribution Inference in GNNs), a novel gradient-based attack designed to infer the private label statistics of target clients in FedGNNs without access to raw data or node features. Fed-Listing only leverages the final-layer gradients exchanged during training to uncover statistical patterns that reveal class proportions in a stealthy manner. An auxiliary shadow dataset is used to generate diverse label partitioning strategies, simulating various client distributions, on which the attack model is obtained. Extensive experiments on four benchmark datasets and three GNN architectures show that Fed-Listing significantly outperforms existing baselines, including random guessing and Decaf, even under challenging non-i.i.d. scenarios. Moreover, applying defense mechanisms can barely reduce our attack performance, unless the model's utility is severely degraded.