Exact inference in complex probabilistic models often incurs prohibitive computational costs. This challenge is particularly acute for autonomous agents in dynamic environments that require frequent, real-time belief updates. Existing methods are often inefficient for ongoing reasoning, as they re-evaluate the entire model upon any change, failing to exploit that real-world information streams have heterogeneous update rates. To address this, we approach the problem from a reactive, asynchronous, probabilistic reasoning perspective. We first introduce Resin (Reactive Signal Inference), a probabilistic programming language that merges probabilistic logic with reactive programming. Furthermore, to provide efficient and exact semantics for Resin, we propose Reactive Circuits (RCs). Formulated as a meta-structure over Algebraic Circuits and asynchronous data streams, RCs are time-dynamic Directed Acyclic Graphs that autonomously adapt themselves based on the volatility of input signals. In high-fidelity drone swarm simulations, our approach achieves several orders of magnitude of speedup over frequency-agnostic inference. We demonstrate that RCs' structural adaptations successfully capture environmental dynamics, significantly reducing latency and facilitating reactive real-time reasoning. By partitioning computations based on the estimated Frequency of Change in the asynchronous inputs, large inference tasks can be decomposed into individually memoized sub-problems. This ensures that only the specific components of a model affected by new information are re-evaluated, drastically reducing redundant computation in streaming contexts.