Institute of Computer Science, Albert-Ludwigs-University Freiburg, Germany
Abstract:While there is a widespread belief that artificial general intelligence (AGI) -- or even superhuman AI -- is imminent, complex problems in expert domains are far from being solved. We argue that such problems require human-AI cooperation and that the current state of the art in generative AI is unable to play the role of a reliable partner due to a multitude of shortcomings, including inability to keep track of a complex solution artifact (e.g., a software program), limited support for versatile human preference expression and lack of adapting to human preference in an interactive setting. To address these challenges, we propose HAI-Co2, a novel human-AI co-construction framework. We formalize HAI-Co2 and discuss the difficult open research problems that it faces. Finally, we present a case study of HAI-Co2 and demonstrate its efficacy compared to monolithic generative AI models.
Abstract:Causal inference in hybrid domains, characterized by a mixture of discrete and continuous variables, presents a formidable challenge. We take a step towards this direction and propose Characteristic Interventional Sum-Product Network ($\chi$SPN) that is capable of estimating interventional distributions in presence of random variables drawn from mixed distributions. $\chi$SPN uses characteristic functions in the leaves of an interventional SPN (iSPN) thereby providing a unified view for discrete and continuous random variables through the Fourier-Stieltjes transform of the probability measures. A neural network is used to estimate the parameters of the learned iSPN using the intervened data. Our experiments on 3 synthetic heterogeneous datasets suggest that $\chi$SPN can effectively capture the interventional distributions for both discrete and continuous variables while being expressive and causally adequate. We also show that $\chi$SPN generalize to multiple interventions while being trained only on a single intervention data.
Abstract:Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages. To remedy these issues, we propose T-FREE, which directly embeds words through sparse activation patterns over character triplets, and does not require a reference corpus. T-FREE inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-FREE shows significant improvements in cross-lingual transfer learning.
Abstract:Properly defining a reward signal to efficiently train a reinforcement learning (RL) agent is a challenging task. Designing balanced objective functions from which a desired behavior can emerge requires expert knowledge, especially for complex environments. Learning rewards from human feedback or using large language models (LLMs) to directly provide rewards are promising alternatives, allowing non-experts to specify goals for the agent. However, black-box reward models make it difficult to debug the reward. In this work, we propose Object-Centric Assessment with Language Models (OCALM) to derive inherently interpretable reward functions for RL agents from natural language task descriptions. OCALM uses the extensive world-knowledge of LLMs while leveraging the object-centric nature common to many environments to derive reward functions focused on relational concepts, providing RL agents with the ability to derive policies from task descriptions.
Abstract:Employing Unmanned Aircraft Systems (UAS) beyond visual line of sight (BVLOS) is an endearing and challenging task. While UAS have the potential to significantly enhance today's logistics and emergency response capabilities, unmanned flying objects above the heads of unprotected pedestrians induce similarly significant safety risks. In this work, we make strides towards improved safety and legal compliance in applying UAS in two ways. First, we demonstrate navigation within the Probabilistic Mission Design (ProMis) framework. To this end, our approach translates Probabilistic Mission Landscapes (PML) into a navigation graph and derives a cost from the probability of complying with all underlying constraints. Second, we introduce the clearance, explanation, and optimization (CEO) cycle on top of ProMis by leveraging the declaratively encoded domain knowledge, legal requirements, and safety assertions to guide the mission design process. Based on inaccurate, crowd-sourced map data and a synthetic scenario, we illustrate the application and utility of our methods in UAS navigation.
Abstract:The challenge in object-based visual reasoning lies in generating descriptive yet distinct concept representations. Moreover, doing this in an unsupervised fashion requires human users to understand a model's learned concepts and potentially revise false concepts. In addressing this challenge, we introduce the Neural Concept Binder, a new framework for deriving discrete concept representations resulting in what we term "concept-slot encodings". These encodings leverage both "soft binding" via object-centric block-slot encodings and "hard binding" via retrieval-based inference. The Neural Concept Binder facilitates straightforward concept inspection and direct integration of external knowledge, such as human input or insights from other AI models like GPT-4. Additionally, we demonstrate that incorporating the hard binding mechanism does not compromise performance; instead, it enables seamless integration into both neural and symbolic modules for intricate reasoning tasks, as evidenced by evaluations on our newly introduced CLEVR-Sudoku dataset.
Abstract:Reinforcement learning (RL) has proven to be a powerful tool for training agents that excel in various games. However, the black-box nature of neural network models often hinders our ability to understand the reasoning behind the agent's actions. Recent research has attempted to address this issue by using the guidance of pretrained neural agents to encode logic-based policies, allowing for interpretable decisions. A drawback of such approaches is the requirement of large amounts of predefined background knowledge in the form of predicates, limiting its applicability and scalability. In this work, we propose a novel approach, Explanatory Predicate Invention for Learning in Games (EXPIL), that identifies and extracts predicates from a pretrained neural agent, later used in the logic-based agents, reducing the dependency on predefined background knowledge. Our experimental evaluation on various games demonstrate the effectiveness of EXPIL in achieving explainable behavior in logic agents while requiring less background knowledge.
Abstract:We introduce LlavaGuard, a family of VLM-based safeguard models, offering a versatile framework for evaluating the safety compliance of visual content. Specifically, we designed LlavaGuard for dataset annotation and generative model safeguarding. To this end, we collected and annotated a high-quality visual dataset incorporating a broad safety taxonomy, which we use to tune VLMs on context-aware safety risks. As a key innovation, LlavaGuard's new responses contain comprehensive information, including a safety rating, the violated safety categories, and an in-depth rationale. Further, our introduced customizable taxonomy categories enable the context-specific alignment of LlavaGuard to various scenarios. Our experiments highlight the capabilities of LlavaGuard in complex and real-world applications. We provide checkpoints ranging from 7B to 34B parameters demonstrating state-of-the-art performance, with even the smallest models outperforming baselines like GPT-4. We make our dataset and model weights publicly available and invite further research to address the diverse needs of communities and contexts.
Abstract:Artificial agents' adaptability to novelty and alignment with intended behavior is crucial for their effective deployment. Reinforcement learning (RL) leverages novelty as a means of exploration, yet agents often struggle to handle novel situations, hindering generalization. To address these issues, we propose HackAtari, a framework introducing controlled novelty to the most common RL benchmark, the Atari Learning Environment. HackAtari allows us to create novel game scenarios (including simplification for curriculum learning), to swap the game elements' colors, as well as to introduce different reward signals for the agent. We demonstrate that current agents trained on the original environments include robustness failures, and evaluate HackAtari's efficacy in enhancing RL agents' robustness and aligning behavior through experiments using C51 and PPO. Overall, HackAtari can be used to improve the robustness of current and future RL algorithms, allowing Neuro-Symbolic RL, curriculum RL, causal RL, as well as LLM-driven RL. Our work underscores the significance of developing interpretable in RL agents.
Abstract:Advanced Air Mobility (AAM) is a growing field that demands a deep understanding of legal, spatial and temporal concepts in navigation. Hence, any implementation of AAM is forced to deal with the inherent uncertainties of human-inhabited spaces. Enabling growth and innovation requires the creation of a system for safe and robust mission design, i.e., the way we formalize intentions and decide their execution as trajectories for the Unmanned Aerial Vehicle (UAV). Although legal frameworks have emerged to govern urban air spaces, their full integration into the decision process of autonomous agents and operators remains an open task. In this work we present ProMis, a system architecture for probabilistic mission design. It links the data available from various static and dynamic data sources with legal text and operator requirements by following principles of formal verification and probabilistic modeling. Hereby, ProMis enables the combination of low-level perception and high-level rules in AAM to infer validity over the UAV's state-space. To this end, we employ Hybrid Probabilistic Logic Programs (HPLP) as a unifying, intermediate representation between perception and action-taking. Furthermore, we present methods to connect ProMis with crowd-sourced map data by generating HPLP atoms that represent spatial relations in a probabilistic fashion. Our claims of the utility and generality of ProMis are supported by experiments on a diverse set of scenarios and a discussion of the computational demands associated with probabilistic missions.