Large Language Model (LLM)-based agents are widely used in real-world applications such as customer service, web navigation, and software engineering. As these systems become more autonomous and are deployed at scale, understanding why an agent takes a particular action becomes increasingly important for accountability and governance. However, existing research predominantly focuses on \textit{failure attribution} to localize explicit errors in unsuccessful trajectories, which is insufficient for explaining the reasoning behind agent behaviors. To bridge this gap, we propose a novel framework for \textbf{general agentic attribution}, designed to identify the internal factors driving agent actions regardless of the task outcome. Our framework operates hierarchically to manage the complexity of agent interactions. Specifically, at the \textit{component level}, we employ temporal likelihood dynamics to identify critical interaction steps; then at the \textit{sentence level}, we refine this localization using perturbation-based analysis to isolate the specific textual evidence. We validate our framework across a diverse suite of agentic scenarios, including standard tool use and subtle reliability risks like memory-induced bias. Experimental results demonstrate that the proposed framework reliably pinpoints pivotal historical events and sentences behind the agent behavior, offering a critical step toward safer and more accountable agentic systems.
Artificial Intelligence is moving from models that only generate text to Agentic AI, where systems behave as autonomous entities that can perceive, reason, plan, and act. Large Language Models (LLMs) are no longer used only as passive knowledge engines but as cognitive controllers that combine memory, tool use, and feedback from their environment to pursue extended goals. This shift already supports the automation of complex workflows in software engineering, scientific discovery, and web navigation, yet the variety of emerging designs, from simple single loop agents to hierarchical multi agent systems, makes the landscape hard to navigate. In this paper, we investigate architectures and propose a unified taxonomy that breaks agents into Perception, Brain, Planning, Action, Tool Use, and Collaboration. We use this lens to describe the move from linear reasoning procedures to native inference time reasoning models, and the transition from fixed API calls to open standards like the Model Context Protocol (MCP) and Native Computer Use. We also group the environments in which these agents operate, including digital operating systems, embodied robotics, and other specialized domains, and we review current evaluation practices. Finally, we highlight open challenges, such as hallucination in action, infinite loops, and prompt injection, and outline future research directions toward more robust and reliable autonomous systems.
Web scraping has historically required technical expertise in HTML parsing, session management, and authentication circumvention, which limited large-scale data extraction to skilled developers. We argue that large language models (LLMs) have democratized web scraping, enabling low-skill users to execute sophisticated operations through simple natural language prompts. While extensive benchmarks evaluate these tools under optimal expert conditions, we show that without extensive manual effort, current LLM-based workflows allow novice users to scrape complex websites that would otherwise be inaccessible. We systematically benchmark what everyday users can do with off-the-shelf LLM tools across 35 sites spanning five security tiers, including authentication, anti-bot, and CAPTCHA controls. We devise and evaluate two distinct workflows: (a) LLM-assisted scripting, where users prompt LLMs to generate traditional scraping code but maintain manual execution control, and (b) end-to-end LLM agents, which autonomously navigate and extract data through integrated tool use. Our results demonstrate that end-to-end agents have made complex scraping accessible - requiring as little as a single prompt with minimal refinement (less than 5 changes) to complete workflows. We also highlight scenarios where LLM-assisted scripting may be simpler and faster for static sites. In light of these findings, we provide simple procedures for novices to use these workflows and gauge what adversaries could achieve using these.
The evolution of autonomous agents is redefining information seeking, transitioning from passive retrieval to proactive, open-ended web research. However, while textual and static multimodal agents have seen rapid progress, a significant modality gap remains in processing the web's most dynamic modality: video. Existing video benchmarks predominantly focus on passive perception, feeding curated clips to models without requiring external retrieval. They fail to evaluate agentic video research, which necessitates actively interrogating video timelines, cross-referencing dispersed evidence, and verifying claims against the open web. To bridge this gap, we present \textbf{Video-BrowseComp}, a challenging benchmark comprising 210 questions tailored for open-web agentic video reasoning. Unlike prior benchmarks, Video-BrowseComp enforces a mandatory dependency on temporal visual evidence, ensuring that answers cannot be derived solely through text search but require navigating video timelines to verify external claims. Our evaluation of state-of-the-art models reveals a critical bottleneck: even advanced search-augmented models like GPT-5.1 (w/ Search) achieve only 15.24\% accuracy. Our analysis reveals that these models largely rely on textual proxies, excelling in metadata-rich domains (e.g., TV shows with plot summaries) but collapsing in metadata-sparse, dynamic environments (e.g., sports, gameplay) where visual grounding is essential. As the first open-web video research benchmark, Video-BrowseComp advances the field beyond passive perception toward proactive video reasoning.
Browser-using agents (BUAs) are an emerging class of autonomous agents that interact with web browsers in human-like ways, including clicking, scrolling, filling forms, and navigating across pages. While these agents help automate repetitive online tasks, they are vulnerable to prompt injection attacks that can trick an agent into performing undesired actions, such as leaking private information or issuing state-changing requests. We propose ceLLMate, a browser-level sandboxing framework that restricts the agent's ambient authority and reduces the blast radius of prompt injections. We address two fundamental challenges: (1) The semantic gap challenge in policy enforcement arises because the agent operates through low-level UI observations and manipulations; however, writing and enforcing policies directly over UI-level events is brittle and error-prone. To address this challenge, we introduce an agent sitemap that maps low-level browser behaviors to high-level semantic actions. (2) Policy prediction in BUAs is the norm rather than the exception. BUAs have no app developer to pre-declare sandboxing policies, and thus, ceLLMate pairs website-authored mandatory policies with an automated policy-prediction layer that adapts and instantiates these policies from the user's natural-language task. We implement ceLLMate as an agent-agnostic browser extension and demonstrate how it enables sandboxing policies that effectively block various types of prompt injection attacks with negligible overhead.
Manual software beta testing is costly and time-consuming, while single-agent large language model (LLM) approaches suffer from hallucinations and inconsistent behavior. We propose a multi-agent committee framework in which diverse vision-enabled LLMs collaborate through a three-round voting protocol to reach consensus on testing actions. The framework combines model diversity, persona-driven behavioral variation, and visual user interface understanding to systematically explore web applications. Across 84 experimental runs with 9 testing personas and 4 scenarios, multi-agent committees achieve an 89.5 percent overall task success rate. Configurations with 2 to 4 agents reach 91.7 to 100 percent success, compared to 78.0 percent for single-agent baselines, yielding improvements of 13.7 to 22.0 percentage points. At the action level, the system attains a 93.1 percent success rate with a median per-action latency of 0.71 seconds, enabling real-time and continuous integration testing. Vision-enabled agents successfully identify user interface elements, with navigation and reporting achieving 100 percent success and form filling achieving 99.2 percent success. We evaluate the framework on WebShop and OWASP benchmarks, achieving 74.7 percent success on WebShop compared to a 50.1 percent published GPT-3 baseline, and 82.0 percent success on OWASP Juice Shop security testing with coverage of 8 of the 10 OWASP Top 10 vulnerability categories. Across 20 injected regressions, the committee achieves an F1 score of 0.91 for bug detection, compared to 0.78 for single-agent baselines. The open-source implementation enables reproducible research and practical deployment of LLM-based software testing in CI/CD pipelines.
LLM-based agents often operate in a greedy, step-by-step manner, selecting actions solely based on the current observation without considering long-term consequences or alternative paths. This lack of foresight is particularly problematic in web environments, which are only partially observable-limited to browser-visible content (e.g., DOM and UI elements)-where a single misstep often requires complex and brittle navigation to undo. Without an explicit backtracking mechanism, agents struggle to correct errors or systematically explore alternative paths. Tree-search methods provide a principled framework for such structured exploration, but existing approaches lack mechanisms for safe backtracking, making them prone to unintended side effects. They also assume that all actions are reversible, ignoring the presence of irreversible actions-limitations that reduce their effectiveness in realistic web tasks. To address these challenges, we introduce WebOperator, a tree-search framework that enables reliable backtracking and strategic exploration. Our method incorporates a best-first search strategy that ranks actions by both reward estimates and safety considerations, along with a robust backtracking mechanism that verifies the feasibility of previously visited paths before replaying them, preventing unintended side effects. To further guide exploration, WebOperator generates action candidates from multiple, varied reasoning contexts to ensure diverse and robust exploration, and subsequently curates a high-quality action set by filtering out invalid actions pre-execution and merging semantically equivalent ones. Experimental results on WebArena and WebVoyager demonstrate the effectiveness of WebOperator. On WebArena, WebOperator achieves a state-of-the-art 54.6% success rate with gpt-4o, underscoring the critical advantage of integrating strategic foresight with safe execution.




Navigating complex urban environments using natural language instructions poses significant challenges for embodied agents, including noisy language instructions, ambiguous spatial references, diverse landmarks, and dynamic street scenes. Current visual navigation methods are typically limited to simulated or off-street environments, and often rely on precise goal formats, such as specific coordinates or images. This limits their effectiveness for autonomous agents like last-mile delivery robots navigating unfamiliar cities. To address these limitations, we introduce UrbanNav, a scalable framework that trains embodied agents to follow free-form language instructions in diverse urban settings. Leveraging web-scale city walking videos, we develop an scalable annotation pipeline that aligns human navigation trajectories with language instructions grounded in real-world landmarks. UrbanNav encompasses over 1,500 hours of navigation data and 3 million instruction-trajectory-landmark triplets, capturing a wide range of urban scenarios. Our model learns robust navigation policies to tackle complex urban scenarios, demonstrating superior spatial reasoning, robustness to noisy instructions, and generalization to unseen urban settings. Experimental results show that UrbanNav significantly outperforms existing methods, highlighting the potential of large-scale web video data to enable language-guided, real-world urban navigation for embodied agents.
Leveraging multimodal large language models (MLLMs) to develop embodied agents offers significant promise for addressing complex real-world tasks. However, current evaluation benchmarks remain predominantly language-centric or heavily reliant on simulated environments, rarely probing the nuanced, knowledge-intensive reasoning essential for practical, real-world scenarios. To bridge this critical gap, we introduce the task of Sparsely Grounded Visual Navigation, explicitly designed to evaluate the sequential decision-making abilities of MLLMs in challenging, knowledge-intensive real-world environments. We operationalize this task with CityNav, a comprehensive benchmark encompassing four diverse global cities, specifically constructed to assess raw MLLM-driven agents in city navigation. Agents are required to rely solely on visual inputs and internal multimodal reasoning to sequentially navigate 50+ decision points without additional environmental annotations or specialized architectural modifications. Crucially, agents must autonomously achieve localization through interpreting city-specific cues and recognizing landmarks, perform spatial reasoning, and strategically plan and execute routes to their destinations. Through extensive evaluations, we demonstrate that current state-of-the-art MLLMs and standard reasoning techniques (e.g., Chain-of-Thought, Reflection) significantly underperform in this challenging setting. To address this, we propose Verbalization of Path (VoP), which explicitly grounds the agent's internal reasoning by probing an explicit cognitive map (key landmarks and directions toward the destination) from the MLLMs, substantially enhancing navigation success. Project Webpage: https://dwipddalal.github.io/AgentNav/
Web agents, like OpenAI's Operator and Google's Project Mariner, are powerful agentic systems pushing the boundaries of Large Language Models (LLM). They can autonomously interact with the internet at the user's behest, such as navigating websites, filling search masks, and comparing price lists. Though web agent research is thriving, induced sustainability issues remain largely unexplored. To highlight the urgency of this issue, we provide an initial exploration of the energy and $CO_2$ cost associated with web agents from both a theoretical -via estimation- and an empirical perspective -by benchmarking. Our results show how different philosophies in web agent creation can severely impact the associated expended energy, and that more energy consumed does not necessarily equate to better results. We highlight a lack of transparency regarding disclosing model parameters and processes used for some web agents as a limiting factor when estimating energy consumption. Our work contributes towards a change in thinking of how we evaluate web agents, advocating for dedicated metrics measuring energy consumption in benchmarks.