Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:This study proves the two-phase dynamics of a deep neural network (DNN) learning interactions. Despite the long disappointing view of the faithfulness of post-hoc explanation of a DNN, in recent years, a series of theorems have been proven to show that given an input sample, a small number of interactions between input variables can be considered as primitive inference patterns, which can faithfully represent every detailed inference logic of the DNN on this sample. Particularly, it has been observed that various DNNs all learn interactions of different complexities with two-phase dynamics, and this well explains how a DNN's generalization power changes from under-fitting to over-fitting. Therefore, in this study, we prove the dynamics of a DNN gradually encoding interactions of different complexities, which provides a theoretically grounded mechanism for the over-fitting of a DNN. Experiments show that our theory well predicts the real learning dynamics of various DNNs on different tasks.

Via

Abstract:This paper aims to prove the emergence of symbolic concepts in well-trained AI models. We prove that if (1) the high-order derivatives of the model output w.r.t. the input variables are all zero, (2) the AI model can be used on occluded samples and will yield higher confidence when the input sample is less occluded, and (3) the confidence of the AI model does not significantly degrade on occluded samples, then the AI model will encode sparse interactive concepts. Each interactive concept represents an interaction between a specific set of input variables, and has a certain numerical effect on the inference score of the model. Specifically, it is proved that the inference score of the model can always be represented as the sum of the interaction effects of all interactive concepts. In fact, we hope to prove that conditions for the emergence of symbolic concepts are quite common. It means that for most AI models, we can usually use a small number of interactive concepts to mimic the model outputs on any arbitrarily masked samples.

Via

Abstract:In this paper, we focus on mean-field variational Bayesian Neural Networks (BNNs) and explore the representation capacity of such BNNs by investigating which types of concepts are less likely to be encoded by the BNN. It has been observed and studied that a relatively small set of interactive concepts usually emerge in the knowledge representation of a sufficiently-trained neural network, and such concepts can faithfully explain the network output. Based on this, our study proves that compared to standard deep neural networks (DNNs), it is less likely for BNNs to encode complex concepts. Experiments verify our theoretical proofs. Note that the tendency to encode less complex concepts does not necessarily imply weak representation power, considering that complex concepts exhibit low generalization power and high adversarial vulnerability.

Via

Figures and Tables:

Abstract:This paper explores the bottleneck of feature representations of deep neural networks (DNNs), from the perspective of the complexity of interactions between input variables encoded in DNNs. To this end, we focus on the multi-order interaction between input variables, where the order represents the complexity of interactions. We discover that a DNN is more likely to encode both too simple interactions and too complex interactions, but usually fails to learn interactions of intermediate complexity. Such a phenomenon is widely shared by different DNNs for different tasks. This phenomenon indicates a cognition gap between DNNs and human beings, and we call it a representation bottleneck. We theoretically prove the underlying reason for the representation bottleneck. Furthermore, we propose a loss to encourage/penalize the learning of interactions of specific complexities, and analyze the representation capacities of interactions of different complexities.

Via

Figures and Tables:

Abstract:In this paper, we evaluate the quality of knowledge representations encoded in deep neural networks (DNNs) for 3D point cloud processing. We propose a method to disentangle the overall model vulnerability into the sensitivity to the rotation, the translation, the scale, and local 3D structures. Besides, we also propose metrics to evaluate the spatial smoothness of encoding 3D structures, and the representation complexity of the DNN. Based on such analysis, experiments expose representation problems with classic DNNs, and explain the utility of the adversarial training.

Via

Authors:Hao Zhang, Yiting Chen, Haotian Ma, Xu Cheng, Qihan Ren, Liyao Xiang, Jie Shi, Quanshi Zhang

Figures and Tables:

Abstract:In order to prevent leaking input information from intermediate-layer features, this paper proposes a method to revise the traditional neural network into the rotation-equivariant neural network (RENN). Compared to the traditional neural network, the RENN uses d-ary vectors/tensors as features, in which each element is a d-ary number. These d-ary features can be rotated (analogous to the rotation of a d-dimensional vector) with a random angle as the encryption process. Input information is hidden in this target phase of d-ary features for attribute obfuscation. Even if attackers have obtained network parameters and intermediate-layer features, they cannot extract input information without knowing the target phase. Hence, the input privacy can be effectively protected by the RENN. Besides, the output accuracy of RENNs only degrades mildly compared to traditional neural networks, and the computational cost is significantly less than the homomorphic encryption.

Via