Abstract:Accurate prediction of house price, a vital aspect of the residential real estate sector, is of substantial interest for a wide range of stakeholders. However, predicting house prices is a complex task due to the significant variability influenced by factors such as house features, location, neighborhood, and many others. Despite numerous attempts utilizing a wide array of algorithms, including recent deep learning techniques, to predict house prices accurately, existing approaches have fallen short of considering a wide range of factors such as textual and visual features. This paper addresses this gap by comprehensively incorporating attributes, such as features, textual descriptions, geo-spatial neighborhood, and house images, typically showcased in real estate listings in a house price prediction system. Specifically, we propose a multi-modal deep learning approach that leverages different types of data to learn more accurate representation of the house. In particular, we learn a joint embedding of raw house attributes, geo-spatial neighborhood, and most importantly from textual description and images representing the house; and finally use a downstream regression model to predict the house price from this jointly learned embedding vector. Our experimental results with a real-world dataset show that the text embedding of the house advertisement description and image embedding of the house pictures in addition to raw attributes and geo-spatial embedding, can significantly improve the house price prediction accuracy. The relevant source code and dataset are publicly accessible at the following URL: https://github.com/4P0N/mhpp
Abstract:While large multimodal models (LMMs) have obtained strong performance on many multimodal tasks, they may still hallucinate while generating text. Their performance on detecting salient features from visual data is also unclear. In this paper, we develop a framework to generate faithful and salient text from mixed-modal data, which includes images and structured data ( represented in knowledge graphs or tables). Specifically, we train a small vision critic model to identify hallucinated and non-salient features from the image modality. The critic model also generates a list of salient image features. This information is used in the post editing step to improve the generation quality. Experiments on two datasets show that our framework improves LMMs' generation quality on both faithfulness and saliency, outperforming recent techniques aimed at reducing hallucination.
Abstract:Code synthesis, which requires a deep understanding of complex natural language problem descriptions, generation of code instructions for complex algorithms and data structures, and the successful execution of comprehensive unit tests, presents a significant challenge. While large language models (LLMs) demonstrate impressive proficiency in natural language processing, their performance in code generation tasks remains limited. In this paper, we introduce a new approach to code generation tasks leveraging multi-agent prompting that uniquely replicates the full cycle of program synthesis as observed in human developers. Our framework, MapCoder, consists of four LLM agents specifically designed to emulate the stages of this cycle: recalling relevant examples, planning, code generation, and debugging. After conducting thorough experiments, with multiple LLM ablations and analyses across eight challenging competitive problem-solving and program synthesis benchmarks, MapCoder showcases remarkable code generation capabilities, achieving new state-of-the-art results (pass@1) on HumanEval (93.9%), MBPP (83.1%), APPS (22.0%), CodeContests (28.5%), and xCodeEval (45.3%). Moreover, our method consistently delivers superior performance across various programming languages and varying problem difficulties. We open-source our framework at https://github.com/Md-Ashraful-Pramanik/MapCoder.
Abstract:Retrieving textual information from natural scene images is an active research area in the field of computer vision with numerous practical applications. Detecting text regions and extracting text from signboards is a challenging problem due to special characteristics like reflecting lights, uneven illumination, or shadows found in real-life natural scene images. With the advent of deep learning-based methods, different sophisticated techniques have been proposed for text detection and text recognition from the natural scene. Though a significant amount of effort has been devoted to extracting natural scene text for resourceful languages like English, little has been done for low-resource languages like Bangla. In this research work, we have proposed an end-to-end system with deep learning-based models for efficiently detecting, recognizing, correcting, and parsing address information from Bangla signboards. We have created manually annotated datasets and synthetic datasets to train signboard detection, address text detection, address text recognition, address text correction, and address text parser models. We have conducted a comparative study among different CTC-based and Encoder-Decoder model architectures for Bangla address text recognition. Moreover, we have designed a novel address text correction model using a sequence-to-sequence transformer-based network to improve the performance of Bangla address text recognition model by post-correction. Finally, we have developed a Bangla address text parser using the state-of-the-art transformer-based pre-trained language model.
Abstract:Social structures and real-world incidents often influence contemporary literary fiction. Existing research in literary fiction analysis explains these real-world phenomena through the manual critical analysis of stories. Conventional Natural Language Processing (NLP) methodologies, including sentiment analysis, narrative summarization, and topic modeling, have demonstrated substantial efficacy in analyzing and identifying similarities within fictional works. However, the intricate dynamics of character interactions within fiction necessitate a more nuanced approach that incorporates visualization techniques. Character interaction graphs (or networks) emerge as a highly suitable means for visualization and information retrieval from the realm of fiction. Therefore, we leverage character interaction graphs with NLP-derived features to explore a diverse spectrum of societal inquiries about contemporary culture's impact on the landscape of literary fiction. Our study involves constructing character interaction graphs from fiction, extracting relevant graph features, and exploiting these features to resolve various real-life queries. Experimental evaluation of influential Bengali fiction over half a century demonstrates that character interaction graphs can be highly effective in specific assessments and information retrieval from literary fiction. Our data and codebase are available at https://cutt.ly/fbMgGEM
Abstract:Analyzing the writing styles of authors and articles is a key to supporting various literary analyses such as author attribution and genre detection. Over the years, rich sets of features that include stylometry, bag-of-words, n-grams have been widely used to perform such analysis. However, the effectiveness of these features largely depends on the linguistic aspects of a particular language and datasets specific characteristics. Consequently, techniques based on these feature sets cannot give desired results across domains. In this paper, we propose a novel Word2vec graph based modeling of a document that can rightly capture both context and style of the document. By using these Word2vec graph based features, we perform classification to perform author attribution and genre detection tasks. Our detailed experimental study with a comprehensive set of literary writings shows the effectiveness of this method over traditional feature based approaches. Our code and data are publicly available at https://cutt.ly/svLjSgk
Abstract:Knowledge Graph (KG)-to-Text generation aims at generating fluent natural-language text that accurately represents the information of a given knowledge graph. While significant progress has been made in this task by exploiting the power of pre-trained language models (PLMs) with appropriate graph structure-aware modules, existing models still fall short of generating faithful text, especially when the ground-truth natural-language text contains additional information that is not present in the graph. In this paper, we develop a KG-to-text generation model that can generate faithful natural-language text from a given graph, in the presence of noisy reference text. Our framework incorporates two core ideas: Firstly, we utilize contrastive learning to enhance the model's ability to differentiate between faithful and hallucinated information in the text, thereby encouraging the decoder to generate text that aligns with the input graph. Secondly, we empower the decoder to control the level of hallucination in the generated text by employing a controllable text generation technique. We evaluate our model's performance through the standard quantitative metrics as well as a ChatGPT-based quantitative and qualitative analysis. Our evaluation demonstrates the superior performance of our model over state-of-the-art KG-to-text models on faithfulness.
Abstract:In this paper, we propose a novel contrastive learning based deep learning framework for patient similarity search using physiological signals. We use a contrastive learning based approach to learn similar embeddings of patients with similar physiological signal data. We also introduce a number of neighbor selection algorithms to determine the patients with the highest similarity on the generated embeddings. To validate the effectiveness of our framework for measuring patient similarity, we select the detection of Atrial Fibrillation (AF) through photoplethysmography (PPG) signals obtained from smartwatch devices as our case study. We present extensive experimentation of our framework on a dataset of over 170 individuals and compare the performance of our framework with other baseline methods on this dataset.
Abstract:Seismic intensity prediction in a geographical area from early or initial seismic waves received by a few seismic stations is a critical component of an effective Earthquake Early Warning (EEW) system. State-of-the-art deep learning-based techniques for this task suffer from limited accuracy in the prediction and, more importantly, require input waveforms of a large time window from a handful number of seismic stations, which is not practical for EEW systems. To overcome the above limitations, in this paper, we propose a novel deep learning approach, Seismic Contrastive Graph Neural Network (SC-GNN) for highly accurate seismic intensity prediction using a small portion of initial seismic waveforms received by a few seismic stations. The SC-GNN comprises two key components: (i) a graph neural network (GNN) to propagate spatiotemporal information through the nodes of a graph-like structure of seismic station distribution and wave propagation, and (ii) a self-supervised contrastive learning component to train the model with larger time windows and make predictions using shorter initial waveforms. The efficacy of our proposed model is thoroughly evaluated through experiments on three real-world seismic datasets, showing superior performance over existing state-of-the-art techniques. In particular, the SC-GNN model demonstrates a substantial reduction in mean squared error (MSE) and the lowest standard deviation of the error, indicating its robustness, reliability, and a strong positive relationship between predicted and actual values. More importantly, the model maintains superior performance even with 5s input waveforms, making it particularly efficient for EEW systems.
Abstract:Bengali typing is mostly performed using English keyboard and can be highly erroneous due to the presence of compound and similarly pronounced letters. Spelling correction of a misspelled word requires understanding of word typing pattern as well as the context of the word usage. We propose a specialized BERT model, BSpell targeted towards word for word correction in sentence level. BSpell contains an end-to-end trainable CNN sub-model named SemanticNet along with specialized auxiliary loss. This allows BSpell to specialize in highly inflected Bengali vocabulary in the presence of spelling errors. We further propose hybrid pretraining scheme for BSpell combining word level and character level masking. Utilizing this pretraining scheme, BSpell achieves 91.5% accuracy on real life Bengali spelling correction validation set. Detailed comparison on two Bengali and one Hindi spelling correction dataset shows the superiority of proposed BSpell over existing spell checkers.