Abstract:Referring Video Object Segmentation is an emerging multi-modal task that aims to segment objects in the video given a natural language expression. In this work, we build two instance-centric models and fuse predicted results from frame-level and instance-level. First, we introduce instance mask into the DETR-based model for query initialization to achieve temporal enhancement and employ SAM for spatial refinement. Secondly, we build an instance retrieval model conducting binary instance mask classification whether the instance is referred. Finally, we fuse predicted results and our method achieved a score of 52.67 J&F in the validation phase and 60.36 J&F in the test phase, securing the final ranking of 3rd place in the 6-th LSVOS Challenge RVOS Track.
Abstract:Pixel-level Video Understanding in the Wild Challenge (PVUW) focus on complex video understanding. In this CVPR 2024 workshop, we add two new tracks, Complex Video Object Segmentation Track based on MOSE dataset and Motion Expression guided Video Segmentation track based on MeViS dataset. In the two new tracks, we provide additional videos and annotations that feature challenging elements, such as the disappearance and reappearance of objects, inconspicuous small objects, heavy occlusions, and crowded environments in MOSE. Moreover, we provide a new motion expression guided video segmentation dataset MeViS to study the natural language-guided video understanding in complex environments. These new videos, sentences, and annotations enable us to foster the development of a more comprehensive and robust pixel-level understanding of video scenes in complex environments and realistic scenarios. The MOSE challenge had 140 registered teams in total, 65 teams participated the validation phase and 12 teams made valid submissions in the final challenge phase. The MeViS challenge had 225 registered teams in total, 50 teams participated the validation phase and 5 teams made valid submissions in the final challenge phase.
Abstract:Motion Expression guided Video Segmentation is a challenging task that aims at segmenting objects in the video based on natural language expressions with motion descriptions. Unlike the previous referring video object segmentation (RVOS), this task focuses more on the motion in video content for language-guided video object segmentation, requiring an enhanced ability to model longer temporal, motion-oriented vision-language data. In this report, based on the RVOS methods, we successfully introduce mask information obtained from the video instance segmentation model as preliminary information for temporal enhancement and employ SAM for spatial refinement. Finally, our method achieved a score of 49.92 J &F in the validation phase and 54.20 J &F in the test phase, securing the final ranking of 2nd in the MeViS Track at the CVPR 2024 PVUW Challenge.
Abstract:Referring Image Segmentation (RIS) aims to segment an object described in natural language from an image, with the main challenge being a text-to-pixel correlation. Previous methods typically rely on single-modality features, such as vision or language features, to guide the multi-modal fusion process. However, this approach limits the interaction between vision and language, leading to a lack of fine-grained correlation between the language description and pixel-level details during the decoding process. In this paper, we introduce FCNet, a framework that employs a bi-directional guided fusion approach where both vision and language play guiding roles. Specifically, we use a vision-guided approach to conduct initial multi-modal fusion, obtaining multi-modal features that focus on key vision information. We then propose a language-guided calibration module to further calibrate these multi-modal features, ensuring they understand the context of the input sentence. This bi-directional vision-language guided approach produces higher-quality multi-modal features sent to the decoder, facilitating adaptive propagation of fine-grained semantic information from textual features to visual features. Experiments on RefCOCO, RefCOCO+, and G-Ref datasets with various backbones consistently show our approach outperforming state-of-the-art methods.
Abstract:Referring image segmentation aims to segment an object referred to by natural language expression from an image. The primary challenge lies in the efficient propagation of fine-grained semantic information from textual features to visual features. Many recent works utilize a Transformer to address this challenge. However, conventional transformer decoders can distort linguistic information with deeper layers, leading to suboptimal results. In this paper, we introduce CRFormer, a model that iteratively calibrates multi-modal features in the transformer decoder. We start by generating language queries using vision features, emphasizing different aspects of the input language. Then, we propose a novel Calibration Decoder (CDec) wherein the multi-modal features can iteratively calibrated by the input language features. In the Calibration Decoder, we use the output of each decoder layer and the original language features to generate new queries for continuous calibration, which gradually updates the language features. Based on CDec, we introduce a Language Reconstruction Module and a reconstruction loss. This module leverages queries from the final layer of the decoder to reconstruct the input language and compute the reconstruction loss. This can further prevent the language information from being lost or distorted. Our experiments consistently show the superior performance of our approach across RefCOCO, RefCOCO+, and G-Ref datasets compared to state-of-the-art methods.
Abstract:Recent trends in Large Vision Language Models (LVLMs) research have been increasingly focusing on advancing beyond general image understanding towards more nuanced, object-level referential comprehension. In this paper, we present and delve into the self-consistency capability of LVLMs, a crucial aspect that reflects the models' ability to both generate informative captions for specific objects and subsequently utilize these captions to accurately re-identify the objects in a closed-loop process. This capability significantly mirrors the precision and reliability of fine-grained visual-language understanding. Our findings reveal that the self-consistency level of existing LVLMs falls short of expectations, posing limitations on their practical applicability and potential. To address this gap, we introduce a novel fine-tuning paradigm named Self-Consistency Tuning (SC-Tune). It features the synergistic learning of a cyclic describer-locator system. This paradigm is not only data-efficient but also exhibits generalizability across multiple LVLMs. Through extensive experiments, we demonstrate that SC-Tune significantly elevates performance across a spectrum of object-level vision-language benchmarks and maintains competitive or improved performance on image-level vision-language benchmarks. Both our model and code will be publicly available at https://github.com/ivattyue/SC-Tune.
Abstract:Visual grounding (VG) aims at locating the foreground entities that match the given natural language expression. Previous datasets and methods for classic VG task mainly rely on the prior assumption that the given expression must literally refer to the target object, which greatly impedes the practical deployment of agents in real-world scenarios. Since users usually prefer to provide the intention-based expressions for the desired object instead of covering all the details, it is necessary for the agents to interpret the intention-driven instructions. Thus, in this work, we take a step further to the intention-driven visual-language (V-L) understanding. To promote classic VG towards human intention interpretation, we propose a new intention-driven visual grounding (IVG) task and build a largest-scale IVG dataset named IntentionVG with free-form intention expressions. Considering that practical agents need to move and find specific targets among various scenarios to realize the grounding task, our IVG task and IntentionVG dataset have taken the crucial properties of both multi-scenario perception and egocentric view into consideration. Besides, various types of models are set up as the baselines to realize our IVG task. Extensive experiments on our IntentionVG dataset and baselines demonstrate the necessity and efficacy of our method for the V-L field. To foster future research in this direction, our newly built dataset and baselines will be publicly available.
Abstract:Referring expression segmentation (RES) aims at segmenting the foreground masks of the entities that match the descriptive natural language expression. Previous datasets and methods for classic RES task heavily rely on the prior assumption that one expression must refer to object-level targets. In this paper, we take a step further to finer-grained part-level RES task. To promote the object-level RES task towards finer-grained vision-language understanding, we put forward a new multi-granularity referring expression segmentation (MRES) task and construct an evaluation benchmark called RefCOCOm by manual annotations. By employing our automatic model-assisted data engine, we build the largest visual grounding dataset namely MRES-32M, which comprises over 32.2M high-quality masks and captions on the provided 1M images. Besides, a simple yet strong model named UniRES is designed to accomplish the unified object-level and part-level grounding task. Extensive experiments on our RefCOCOm for MRES and three datasets (i.e., RefCOCO(+/g) for classic RES task demonstrate the superiority of our method over previous state-of-the-art methods. To foster future research into fine-grained visual grounding, our benchmark RefCOCOm, the MRES-32M dataset and model UniRES will be publicly available at https://github.com/Rubics-Xuan/MRES
Abstract:Referring image segmentation aims to segment an object mentioned in natural language from an image. A main challenge is language-related localization, which means locating the object with the relevant language. Previous approaches mainly focus on the fusion of vision and language features without fully addressing language-related localization. In previous approaches, fused vision-language features are directly fed into a decoder and pass through a convolution with a fixed kernel to obtain the result, which follows a similar pattern as traditional image segmentation. This approach does not explicitly align language and vision features in the segmentation stage, resulting in a suboptimal language-related localization. Different from previous methods, we propose Explicitly Align the Vision and Language for Referring Image Segmentation (EAVL). Instead of using a fixed convolution kernel, we propose an Aligner which explicitly aligns the vision and language features in the segmentation stage. Specifically, a series of unfixed convolution kernels are generated based on the input l, and then are use to explicitly align the vision and language features. To achieve this, We generate multiple queries that represent different emphases of the language expression. These queries are transformed into a series of query-based convolution kernels. Then, we utilize these kernels to do convolutions in the segmentation stage and obtain a series of segmentation masks. The final result is obtained through the aggregation of all masks. Our method can not only fuse vision and language features effectively but also exploit their potential in the segmentation stage. And most importantly, we explicitly align language features of different emphases with the image features to achieve language-related localization. Our method surpasses previous state-of-the-art methods on RefCOCO, RefCOCO+, and G-Ref by large margins.
Abstract:Due to the limited scale and quality of video-text training corpus, most vision-language foundation models employ image-text datasets for pretraining and primarily focus on modeling visually semantic representations while disregarding temporal semantic representations and correlations. To address this issue, we propose COSA, a COncatenated SAmple pretrained vision-language foundation model. COSA jointly models visual contents and event-level temporal cues using only image-text corpora. We achieve this by sequentially concatenating multiple image-text pairs as inputs for pretraining. This transformation effectively converts existing image-text corpora into a pseudo long-form video-paragraph corpus, enabling richer scene transformations and explicit event-description correspondence. Extensive experiments demonstrate that COSA consistently improves performance across a broad range of downstream tasks, including long-form/short-form video-text tasks and image-text tasks such as retrieval, captioning, and question answering. Notably, COSA achieves state-of-the-art results on various competitive benchmarks. Code and model are released at https://github.com/TXH-mercury/COSA.