Abstract:In the human activity recognition research area, prior studies predominantly concentrate on leveraging advanced algorithms on public datasets to enhance recognition performance, little attention has been paid to executing real-time kitchen activity recognition on energy-efficient, cost-effective edge devices. Besides, the prevalent approach of segregating data collection and context extraction across different devices escalates power usage, latency, and user privacy risks, impeding widespread adoption. This work presents a multi-modal wearable edge computing system for human activity recognition in real-time. Integrating six different sensors, ranging from inertial measurement units (IMUs) to thermal cameras, and two different microcontrollers, this system achieves end-to-end activity recognition, from data capture to context extraction, locally. Evaluation in an unmodified realistic kitchen validates its efficacy in recognizing fifteen activities, including a null class. Employing a compact machine learning model (184.5 kbytes) yields an average accuracy of 87.83 \%, with model inference completed in 25.26 ms on the microcontroller. Comparative analysis with alternative microcontrollers showcases power consumption and inference speed performance, demonstrating the proposed system's viability.
Abstract:Smaller machine learning models, with less complex architectures and sensor inputs, can benefit wearable sensor-based human activity recognition (HAR) systems in many ways, from complexity and cost to battery life. In the specific case of smart factories, optimizing human-robot collaboration hinges on the implementation of cutting-edge, human-centric AI systems. To this end, workers' activity recognition enables accurate quantification of performance metrics, improving efficiency holistically. We present a two-stage semantic-aware knowledge distillation (KD) approach, TSAK, for efficient, privacy-aware, and wearable HAR in manufacturing lines, which reduces the input sensor modalities as well as the machine learning model size, while reaching similar recognition performance as a larger multi-modal and multi-positional teacher model. The first stage incorporates a teacher classifier model encoding attention, causal, and combined representations. The second stage encompasses a semantic classifier merging the three representations from the first stage. To evaluate TSAK, we recorded a multi-modal dataset at a smart factory testbed with wearable and privacy-aware sensors (IMU and capacitive) located on both workers' hands. In addition, we evaluated our approach on OpenPack, the only available open dataset mimicking the wearable sensor placements on both hands in the manufacturing HAR scenario. We compared several KD strategies with different representations to regulate the training process of a smaller student model. Compared to the larger teacher model, the student model takes fewer sensor channels from a single hand, has 79% fewer parameters, runs 8.88 times faster, and requires 96.6% less computing power (FLOPS).
Abstract:Despite the widespread integration of ambient light sensors (ALS) in smart devices commonly used for screen brightness adaptation, their application in human activity recognition (HAR), primarily through body-worn ALS, is largely unexplored. In this work, we developed ALS-HAR, a robust wearable light-based motion activity classifier. Although ALS-HAR achieves comparable accuracy to other modalities, its natural sensitivity to external disturbances, such as changes in ambient light, weather conditions, or indoor lighting, makes it challenging for daily use. To address such drawbacks, we introduce strategies to enhance environment-invariant IMU-based activity classifications through augmented multi-modal and contrastive classifications by transferring the knowledge extracted from the ALS. Our experiments on a real-world activity dataset for three different scenarios demonstrate that while ALS-HAR's accuracy strongly relies on external lighting conditions, cross-modal information can still improve other HAR systems, such as IMU-based classifiers.Even in scenarios where ALS performs insufficiently, the additional knowledge enables improved accuracy and macro F1 score by up to 4.2 % and 6.4 %, respectively, for IMU-based classifiers and even surpasses multi-modal sensor fusion models in two of our three experiment scenarios. Our research highlights the untapped potential of ALS integration in advancing sensor-based HAR technology, paving the way for practical and efficient wearable ALS-based activity recognition systems with potential applications in healthcare, sports monitoring, and smart indoor environments.
Abstract:Large Language Models (LLMs) have made significant advances in natural language processing, but their underlying mechanisms are often misunderstood. Despite exhibiting coherent answers and apparent reasoning behaviors, LLMs rely on statistical patterns in word embeddings rather than true cognitive processes. This leads to vulnerabilities such as "hallucination" and misinformation. The paper argues that current LLM architectures are inherently untrustworthy due to their reliance on correlations of sequential patterns of word embedding vectors. However, ongoing research into combining generative transformer-based models with fact bases and logic programming languages may lead to the development of trustworthy LLMs capable of generating statements based on given truth and explaining their self-reasoning process.
Abstract:Hybrid intelligence aims to enhance decision-making, problem-solving, and overall system performance by combining the strengths of both, human cognitive abilities and artificial intelligence. With the rise of Large Language Models (LLM), progressively participating as smart agents to accelerate machine learning development, Hybrid Intelligence is becoming an increasingly important topic for effective interaction between humans and machines. This paper presents an approach to leverage Hybrid Intelligence towards sustainable and energy-aware machine learning. When developing machine learning models, final model performance commonly rules the optimization process while the efficiency of the process itself is often neglected. Moreover, in recent times, energy efficiency has become equally crucial due to the significant environmental impact of complex and large-scale computational processes. The contribution of this work covers the interactive inclusion of secondary knowledge sources through Human-in-the-loop (HITL) and LLM agents to stress out and further resolve inefficiencies in the machine learning development process.
Abstract:In this work, we explore the use of a novel neural network architecture, the Kolmogorov-Arnold Networks (KANs) as feature extractors for sensor-based (specifically IMU) Human Activity Recognition (HAR). Where conventional networks perform a parameterized weighted sum of the inputs at each node and then feed the result into a statically defined nonlinearity, KANs perform non-linear computations represented by B-SPLINES on the edges leading to each node and then just sum up the inputs at the node. Instead of learning weights, the system learns the spline parameters. In the original work, such networks have been shown to be able to more efficiently and exactly learn sophisticated real valued functions e.g. in regression or PDE solution. We hypothesize that such an ability is also advantageous for computing low-level features for IMU-based HAR. To this end, we have implemented KAN as the feature extraction architecture for IMU-based human activity recognition tasks, including four architecture variations. We present an initial performance investigation of the KAN feature extractor on four public HAR datasets. It shows that the KAN-based feature extractor outperforms CNN-based extractors on all datasets while being more parameter efficient.
Abstract:Human Activity Recognition is a longstanding problem in AI with applications in a broad range of areas: from healthcare, sports and fitness, security, and human computer interaction to robotics. The performance of HAR in real-world settings is strongly dependent on the type and quality of the input signal that can be acquired. Given an unobstructed, high-quality camera view of a scene, computer vision systems, in particular in conjunction with foundational models (e.g., CLIP), can today fairly reliably distinguish complex activities. On the other hand, recognition using modalities such as wearable sensors (which are often more broadly available, e.g, in mobile phones and smartwatches) is a more difficult problem, as the signals often contain less information and labeled training data is more difficult to acquire. In this work, we show how we can improve HAR performance across different modalities using multimodal contrastive pretraining. Our approach MuJo (Multimodal Joint Feature Space Learning), learns a multimodal joint feature space with video, language, pose, and IMU sensor data. The proposed approach combines contrastive and multitask learning methods and analyzes different multitasking strategies for learning a compact shared representation. A large dataset with parallel video, language, pose, and sensor data points is also introduced to support the research, along with an analysis of the robustness of the multimodal joint space for modal-incomplete and low-resource data. On the MM-Fit dataset, our model achieves an impressive Macro F1-Score of up to 0.992 with only 2% of the train data and 0.999 when using all available training data for classification tasks. Moreover, in the scenario where the MM-Fit dataset is unseen, we demonstrate a generalization performance of up to 0.638.
Abstract:Due to the scarcity of labeled sensor data in HAR, prior research has turned to video data to synthesize Inertial Measurement Units (IMU) data, capitalizing on its rich activity annotations. However, generating IMU data from videos presents challenges for HAR in real-world settings, attributed to the poor quality of synthetic IMU data and its limited efficacy in subtle, fine-grained motions. In this paper, we propose Multi$^3$Net, our novel multi-modal, multitask, and contrastive-based framework approach to address the issue of limited data. Our pretraining procedure uses videos from online repositories, aiming to learn joint representations of text, pose, and IMU simultaneously. By employing video data and contrastive learning, our method seeks to enhance wearable HAR performance, especially in recognizing subtle activities.Our experimental findings validate the effectiveness of our approach in improving HAR performance with IMU data. We demonstrate that models trained with synthetic IMU data generated from videos using our method surpass existing approaches in recognizing fine-grained activities.
Abstract:This work proposes an incremental learning (IL) framework for wearable sensor human activity recognition (HAR) that tackles two challenges simultaneously: catastrophic forgetting and non-uniform inputs. The scalable framework, iKAN, pioneers IL with Kolmogorov-Arnold Networks (KAN) to replace multi-layer perceptrons as the classifier that leverages the local plasticity and global stability of splines. To adapt KAN for HAR, iKAN uses task-specific feature branches and a feature redistribution layer. Unlike existing IL methods that primarily adjust the output dimension or the number of classifier nodes to adapt to new tasks, iKAN focuses on expanding the feature extraction branches to accommodate new inputs from different sensor modalities while maintaining consistent dimensions and the number of classifier outputs. Continual learning across six public HAR datasets demonstrated the iKAN framework's incremental learning performance, with a last performance of 84.9\% (weighted F1 score) and an average incremental performance of 81.34\%, which significantly outperforms the two existing incremental learning methods, such as EWC (51.42\%) and experience replay (59.92\%).
Abstract:Smart factories leverage advanced technologies to optimize manufacturing processes and enhance efficiency. Implementing worker tracking systems, primarily through camera-based methods, ensures accurate monitoring. However, concerns about worker privacy and technology protection make it necessary to explore alternative approaches. We propose a non-visual, scalable solution using Bluetooth Low Energy (BLE) and ultrasound coordinates. BLE position estimation offers a very low-power and cost-effective solution, as the technology is available on smartphones and is scalable due to the large number of smartphone users, facilitating worker localization and safety protocol transmission. Ultrasound signals provide faster response times and higher accuracy but require custom hardware, increasing costs. To combine the benefits of both modalities, we employ knowledge distillation (KD) from ultrasound signals to BLE RSSI data. Once the student model is trained, the model only takes as inputs the BLE-RSSI data for inference, retaining the advantages of ubiquity and low cost of BLE RSSI. We tested our approach using data from an experiment with twelve participants in a smart factory test bed environment. We obtained an increase of 11.79% in the F1-score compared to the baseline (target model without KD and trained with BLE-RSSI data only).