Abstract:Federated learning promises to revolutionize machine learning by enabling collaborative model training without compromising data privacy. However, practical adaptability can be limited by critical factors, such as the participation dilemma. Participating entities are often unwilling to contribute to a learning system unless they receive some benefits, or they may pretend to participate and free-ride on others. This chapter identifies the fundamental challenges in designing incentive mechanisms for federated learning systems. It examines how foundational concepts from economics and game theory can be applied to federated learning, alongside technology-driven solutions such as blockchain and deep reinforcement learning. This work presents a comprehensive taxonomy that thoroughly covers both centralized and decentralized architectures based on the aforementioned theoretical concepts. Furthermore, the concepts described are presented from an application perspective, covering emerging industrial applications, including healthcare, smart infrastructure, vehicular networks, and blockchain-based decentralized systems. Through this exploration, this chapter demonstrates that well-designed incentive mechanisms are not merely optional features but essential components for the practical success of federated learning. This analysis reveals both the promising solutions that have emerged and the significant challenges that remain in building truly sustainable, fair, and robust federated learning ecosystems.
Abstract:Decentralized Federated Learning (DFL) enables privacy-preserving collaborative training without centralized servers, but remains vulnerable to Byzantine attacks where malicious clients submit corrupted model updates. Existing Byzantine-robust DFL defenses rely on similarity-based neighbor screening that requires every client to exchange and compare complete high-dimensional model vectors with all neighbors in each training round, creating prohibitive communication and computational costs that prevent deployment at web scale. We propose SketchGuard, a general framework that decouples Byzantine filtering from model aggregation through sketch-based neighbor screening. SketchGuard compresses $d$-dimensional models to $k$-dimensional sketches ($k \ll d$) using Count Sketch for similarity comparisons, then selectively fetches full models only from accepted neighbors, reducing per-round communication complexity from $O(d|N_i|)$ to $O(k|N_i| + d|S_i|)$, where $|N_i|$ is the neighbor count and $|S_i| \le |N_i|$ is the accepted neighbor count. We establish rigorous convergence guarantees in both strongly convex and non-convex settings, proving that Count Sketch compression preserves Byzantine resilience with controlled degradation bounds where approximation errors introduce only a $(1+O(\epsilon))$ factor in the effective threshold parameter. Comprehensive experiments across multiple datasets, network topologies, and attack scenarios demonstrate that SketchGuard maintains identical robustness to state-of-the-art methods while reducing computation time by up to 82% and communication overhead by 50-70% depending on filtering effectiveness, with benefits scaling multiplicatively with model dimensionality and network connectivity. These results establish the viability of sketch-based compression as a fundamental enabler of robust DFL at web scale.
Abstract:Federated learning systems increasingly rely on diverse network topologies to address scalability and organizational constraints. While existing privacy research focuses on gradient-based attacks, the privacy implications of network topology knowledge remain critically understudied. We conduct the first comprehensive analysis of topology-based privacy leakage across realistic adversarial knowledge scenarios, demonstrating that adversaries with varying degrees of structural knowledge can infer sensitive data distribution patterns even under strong differential privacy guarantees. Through systematic evaluation of 4,720 attack instances, we analyze six distinct adversarial knowledge scenarios: complete topology knowledge and five partial knowledge configurations reflecting real-world deployment constraints. We propose three complementary attack vectors: communication pattern analysis, parameter magnitude profiling, and structural position correlation, achieving success rates of 84.1%, 65.0%, and 47.2% under complete knowledge conditions. Critically, we find that 80% of realistic partial knowledge scenarios maintain attack effectiveness above security thresholds, with certain partial knowledge configurations achieving performance superior to the baseline complete knowledge scenario. To address these vulnerabilities, we propose and empirically validate structural noise injection as a complementary defense mechanism across 808 configurations, demonstrating up to 51.4% additional attack reduction when properly layered with existing privacy techniques. These results establish that network topology represents a fundamental privacy vulnerability in federated learning systems while providing practical pathways for mitigation through topology-aware defense mechanisms.




Abstract:In today's Function-as-a-Service offerings, a programmer is usually responsible for configuring function memory for its successful execution, which allocates proportional function resources such as CPU and network. However, right-sizing the function memory force developers to speculate performance and make ad-hoc configuration decisions. Recent research has highlighted that a function's input characteristics, such as input size, type and number of inputs, significantly impact its resource demand, run-time performance and costs with fluctuating workloads. This correlation further makes memory configuration a non-trivial task. On that account, an input-aware function memory allocator not only improves developer productivity by completely hiding resource-related decisions but also drives an opportunity to reduce resource wastage and offer a finer-grained cost-optimised pricing scheme. Therefore, we present MemFigLess, a serverless solution that estimates the memory requirement of a serverless function with input-awareness. The framework executes function profiling in an offline stage and trains a multi-output Random Forest Regression model on the collected metrics to invoke input-aware optimal configurations. We evaluate our work with the state-of-the-art approaches on AWS Lambda service to find that MemFigLess is able to capture the input-aware resource relationships and allocate upto 82% less resources and save up to 87% run-time costs.




Abstract:The application of Transformer-based large models has achieved numerous success in recent years. However, the exponential growth in the parameters of large models introduces formidable memory challenge for edge deployment. Prior works to address this challenge mainly focus on optimizing the model structure and adopting memory swapping methods. However, the former reduces the inference accuracy, and the latter raises the inference latency. This paper introduces PIPELOAD, a novel memory-efficient pipeline execution mechanism. It reduces memory usage by incorporating dynamic memory management and minimizes inference latency by employing parallel model loading. Based on PIPELOAD mechanism, we present Hermes, a framework optimized for large model inference on edge devices. We evaluate Hermes on Transformer-based models of different sizes. Our experiments illustrate that Hermes achieves up to 4.24 X increase in inference speed and 86.7% lower memory consumption than the state-of-the-art pipeline mechanism for BERT and ViT models, 2.58 X increase in inference speed and 90.3% lower memory consumption for GPT-style models.
Abstract:We often use "explainable" Artificial Intelligence (XAI)" and "interpretable AI (IAI)" interchangeably when we apply various XAI tools for a given dataset to explain the reasons that underpin machine learning (ML) outputs. However, these notions can sometimes be confusing because interpretation often has a subjective connotation, while explanations lean towards objective facts. We argue that XAI is a subset of IAI. The concept of IAI is beyond the sphere of a dataset. It includes the domain of a mindset. At the core of this ambiguity is the duality of reasons, in which we can reason either outwards or inwards. When directed outwards, we want the reasons to make sense through the laws of nature. When turned inwards, we want the reasons to be happy, guided by the laws of the heart. While XAI and IAI share reason as the common notion for the goal of transparency, clarity, fairness, reliability, and accountability in the context of ethical AI and trustworthy AI (TAI), their differences lie in that XAI emphasizes the post-hoc analysis of a dataset, and IAI requires a priori mindset of abstraction. This hypothesis can be proved by empirical experiments based on an open dataset and harnessed by High-Performance Computing (HPC). The demarcation of XAI and IAI is indispensable because it would be impossible to determine regulatory policies for many AI applications, especially in healthcare, human resources, banking, and finance. We aim to clarify these notions and lay the foundation of XAI, IAI, EAI, and TAI for many practitioners and policymakers in future AI applications and research.
Abstract:Federated learning has become an emerging technology for data analysis for IoT applications. This paper implements centralized and decentralized federated learning frameworks for crop yield prediction based on Long Short-Term Memory Network. For centralized federated learning, multiple clients and one server is considered, where the clients exchange their model updates with the server that works as the aggregator to build the global model. For the decentralized framework, a collaborative network is formed among the devices either using ring topology or using mesh topology. In this network, each device receives model updates from the neighbour devices, and performs aggregation to build the upgraded model. The performance of the centralized and decentralized federated learning frameworks are evaluated in terms of prediction accuracy, precision, recall, F1-Score, and training time. The experimental results present that $\geq$97% and $>$97.5% prediction accuracy are achieved using the centralized and decentralized federated learning-based frameworks respectively. The results also show that the using centralized federated learning the response time can be reduced by $\sim$75% than the cloud-only framework. Finally, the future research directions of the use of federated learning in crop yield prediction are explored in this paper.
Abstract:With the emergence of Cloud computing, Internet of Things-enabled Human-Computer Interfaces, Generative Artificial Intelligence, and high-accurate Machine and Deep-learning recognition and predictive models, along with the Post Covid-19 proliferation of social networking, and remote communications, the Metaverse gained a lot of popularity. Metaverse has the prospective to extend the physical world using virtual and augmented reality so the users can interact seamlessly with the real and virtual worlds using avatars and holograms. It has the potential to impact people in the way they interact on social media, collaborate in their work, perform marketing and business, teach, learn, and even access personalized healthcare. Several works in the literature examine Metaverse in terms of hardware wearable devices, and virtual reality gaming applications. However, the requirements of realizing the Metaverse in realtime and at a large-scale need yet to be examined for the technology to be usable. To address this limitation, this paper presents the temporal evolution of Metaverse definitions and captures its evolving requirements. Consequently, we provide insights into Metaverse requirements. In addition to enabling technologies, we lay out architectural elements for scalable, reliable, and efficient Metaverse systems, and a classification of existing Metaverse applications along with proposing required future research directions.
Abstract:Function-as-a-Service is a cloud computing paradigm offering an event-driven execution model to applications. It features serverless attributes by eliminating resource management responsibilities from developers and offers transparent and on-demand scalability of applications. Typical serverless applications have stringent response time and scalability requirements and therefore rely on deployed services to provide quick and fault-tolerant feedback to clients. However, the FaaS paradigm suffers from cold starts as there is a non-negligible delay associated with on-demand function initialization. This work focuses on reducing the frequency of cold starts on the platform by using Reinforcement Learning. Our approach uses Q-learning and considers metrics such as function CPU utilization, existing function instances, and response failure rate to proactively initialize functions in advance based on the expected demand. The proposed solution was implemented on Kubeless and was evaluated using a normalised real-world function demand trace with matrix multiplication as the workload. The results demonstrate a favourable performance of the RL-based agent when compared to Kubeless' default policy and function keep-alive policy by improving throughput by up to 8.81% and reducing computation load and resource wastage by up to 55% and 37%, respectively, which is a direct outcome of reduced cold starts.




Abstract:Function-as-a-Service (FaaS) introduces a lightweight, function-based cloud execution model that finds its relevance in applications like IoT-edge data processing and anomaly detection. While CSP offer a near-infinite function elasticity, these applications often experience fluctuating workloads and stricter performance constraints. A typical CSP strategy is to empirically determine and adjust desired function instances, "autoscaling", based on monitoring-based thresholds such as CPU or memory, to cope with demand and performance. However, threshold configuration either requires expert knowledge, historical data or a complete view of environment, making autoscaling a performance bottleneck lacking an adaptable solution.RL algorithms are proven to be beneficial in analysing complex cloud environments and result in an adaptable policy that maximizes the expected objectives. Most realistic cloud environments usually involve operational interference and have limited visibility, making them partially observable. A general solution to tackle observability in highly dynamic settings is to integrate Recurrent units with model-free RL algorithms and model a decision process as a POMDP. Therefore, in this paper, we investigate a model-free Recurrent RL agent for function autoscaling and compare it against the model-free Proximal Policy Optimisation (PPO) algorithm. We explore the integration of a LSTM network with the state-of-the-art PPO algorithm to find that under our experimental and evaluation settings, recurrent policies were able to capture the environment parameters and show promising results for function autoscaling. We further compare a PPO-based autoscaling agent with commercially used threshold-based function autoscaling and posit that a LSTM-based autoscaling agent is able to improve throughput by 18%, function execution by 13% and account for 8.4% more function instances.