Abstract:In this paper we address the simultaneous collision detection and force estimation problem for quadrupedal locomotion using joint encoder information and the robot dynamics only. We design an interacting multiple-model Kalman filter (IMM-KF) that estimates the external force exerted on the robot and multiple possible contact modes. The method is invariant to any gait pattern design. Our approach leverages pseudo-measurement information of the external forces based on the robot dynamics and encoder information. Based on the estimated contact mode and external force, we design a reflex motion and an admittance controller for the swing leg to avoid collisions by adjusting the leg's reference motion. Additionally, we implement a force-adaptive model predictive controller to enhance balancing. Simulation ablatation studies and experiments show the efficacy of the approach.
Abstract:Augmented Reality (AR) and Multimodal Large Language Models (LLMs) are rapidly evolving, providing unprecedented capabilities for human-computer interaction. However, their integration introduces a new attack surface for social engineering. In this paper, we systematically investigate the feasibility of orchestrating AR-driven Social Engineering attacks using Multimodal LLM for the first time, via our proposed SEAR framework, which operates through three key phases: (1) AR-based social context synthesis, which fuses Multimodal inputs (visual, auditory and environmental cues); (2) role-based Multimodal RAG (Retrieval-Augmented Generation), which dynamically retrieves and integrates contextual data while preserving character differentiation; and (3) ReInteract social engineering agents, which execute adaptive multiphase attack strategies through inference interaction loops. To verify SEAR, we conducted an IRB-approved study with 60 participants in three experimental configurations (unassisted, AR+LLM, and full SEAR pipeline) compiling a new dataset of 180 annotated conversations in simulated social scenarios. Our results show that SEAR is highly effective at eliciting high-risk behaviors (e.g., 93.3% of participants susceptible to email phishing). The framework was particularly effective in building trust, with 85% of targets willing to accept an attacker's call after an interaction. Also, we identified notable limitations such as ``occasionally artificial'' due to perceived authenticity gaps. This work provides proof-of-concept for AR-LLM driven social engineering attacks and insights for developing defensive countermeasures against next-generation augmented reality threats.
Abstract:The proliferation of fake news on social media platforms has exerted a substantial influence on society, leading to discernible impacts and deleterious consequences. Conventional deep learning methodologies employing small language models (SLMs) suffer from the necessity for extensive supervised training and the challenge of adapting to rapidly evolving circumstances. Large language models (LLMs), despite their robust zero-shot capabilities, have fallen short in effectively identifying fake news due to a lack of pertinent demonstrations and the dynamic nature of knowledge. In this paper, a novel framework Multi-Round Collaboration Detection (MRCD) is proposed to address these aforementioned limitations. The MRCD framework is capable of enjoying the merits from both LLMs and SLMs by integrating their generalization abilities and specialized functionalities, respectively. Our approach features a two-stage retrieval module that selects relevant and up-to-date demonstrations and knowledge, enhancing in-context learning for better detection of emerging news events. We further design a multi-round learning framework to ensure more reliable detection results. Our framework MRCD achieves SOTA results on two real-world datasets Pheme and Twitter16, with accuracy improvements of 7.4\% and 12.8\% compared to using only SLMs, which effectively addresses the limitations of current models and improves the detection of emergent fake news.
Abstract:We propose an integrated planning framework for quadrupedal locomotion over dynamically changing, unforeseen terrains. Existing approaches either rely on heuristics for instantaneous foothold selection--compromising safety and versatility--or solve expensive trajectory optimization problems with complex terrain features and long time horizons. In contrast, our framework leverages reactive synthesis to generate correct-by-construction controllers at the symbolic level, and mixed-integer convex programming (MICP) for dynamic and physically feasible footstep planning for each symbolic transition. We use a high-level manager to reduce the large state space in synthesis by incorporating local environment information, improving synthesis scalability. To handle specifications that cannot be met due to dynamic infeasibility, and to minimize costly MICP solves, we leverage a symbolic repair process to generate only necessary symbolic transitions. During online execution, re-running the MICP with real-world terrain data, along with runtime symbolic repair, bridges the gap between offline synthesis and online execution. We demonstrate, in simulation, our framework's capabilities to discover missing locomotion skills and react promptly in safety-critical environments, such as scattered stepping stones and rebars.
Abstract:Large Language Models (LLMs) have recently demonstrated remarkable capabilities in reasoning, planning, and decision-making. Building upon these strengths, researchers have begun incorporating LLMs into multi-agent systems (MAS), where agents collaborate or compete through natural language interactions to tackle tasks beyond the scope of single-agent setups. In this survey, we present a communication-centric perspective on LLM-based multi-agent systems, examining key system-level features such as architecture design and communication goals, as well as internal mechanisms like communication strategies, paradigms, objects and content. We illustrate how these communication elements interplay to enable collective intelligence and flexible collaboration. Furthermore, we discuss prominent challenges, including scalability, security, and multimodal integration, and propose directions for future work to advance research in this emerging domain. Ultimately, this survey serves as a catalyst for further innovation, fostering more robust, scalable, and intelligent multi-agent systems across diverse application domains.
Abstract:Humanoid robots are designed to perform diverse loco-manipulation tasks. However, they face challenges due to their high-dimensional and unstable dynamics, as well as the complex contact-rich nature of the tasks. Model-based optimal control methods offer precise and systematic control but are limited by high computational complexity and accurate contact sensing. On the other hand, reinforcement learning (RL) provides robustness and handles high-dimensional spaces but suffers from inefficient learning, unnatural motion, and sim-to-real gaps. To address these challenges, we introduce Opt2Skill, an end-to-end pipeline that combines model-based trajectory optimization with RL to achieve robust whole-body loco-manipulation. We generate reference motions for the Digit humanoid robot using differential dynamic programming (DDP) and train RL policies to track these trajectories. Our results demonstrate that Opt2Skill outperforms pure RL methods in both training efficiency and task performance, with optimal trajectories that account for torque limits enhancing trajectory tracking. We successfully transfer our approach to real-world applications.
Abstract:Fine-tuning Pre-trained protein language models (PLMs) has emerged as a prominent strategy for enhancing downstream prediction tasks, often outperforming traditional supervised learning approaches. As a widely applied powerful technique in natural language processing, employing Parameter-Efficient Fine-Tuning techniques could potentially enhance the performance of PLMs. However, the direct transfer to life science tasks is non-trivial due to the different training strategies and data forms. To address this gap, we introduce SES-Adapter, a simple, efficient, and scalable adapter method for enhancing the representation learning of PLMs. SES-Adapter incorporates PLM embeddings with structural sequence embeddings to create structure-aware representations. We show that the proposed method is compatible with different PLM architectures and across diverse tasks. Extensive evaluations are conducted on 2 types of folding structures with notable quality differences, 9 state-of-the-art baselines, and 9 benchmark datasets across distinct downstream tasks. Results show that compared to vanilla PLMs, SES-Adapter improves downstream task performance by a maximum of 11% and an average of 3%, with significantly accelerated training speed by a maximum of 1034% and an average of 362%, the convergence rate is also improved by approximately 2 times. Moreover, positive optimization is observed even with low-quality predicted structures. The source code for SES-Adapter is available at https://github.com/tyang816/SES-Adapter.
Abstract:The escalating prevalence of diabetes globally underscores the need for diabetes management. Recent research highlights the growing focus on digital biomarkers in diabetes management, with innovations in computational frameworks and noninvasive monitoring techniques using personalized glucose metrics. However, they predominantly focus on insulin dosing and specific glucose values, or with limited attention given to overall glycemic control. This leaves a gap in expanding the scope of digital biomarkers for overall glycemic control in diabetes management. To address such a research gap, we propose GluMarker -- an end-to-end framework for modeling digital biomarkers using broader factors sources to predict glycemic control. Through the assessment and refinement of various machine learning baselines, GluMarker achieves state-of-the-art on Anderson's dataset in predicting next-day glycemic control. Moreover, our research identifies key digital biomarkers for the next day's glycemic control prediction. These identified biomarkers are instrumental in illuminating the daily factors that influence glycemic management, offering vital insights for diabetes care.
Abstract:The global diabetes epidemic highlights the importance of maintaining good glycemic control. Glucose prediction is a fundamental aspect of diabetes management, facilitating real-time decision-making. Recent research has introduced models focusing on long-term glucose trend prediction, which are unsuitable for real-time decision-making and result in delayed responses. Conversely, models designed to respond to immediate glucose level changes cannot analyze glucose variability comprehensively. Moreover, contemporary research generally integrates various physiological parameters (e.g. insulin doses, food intake, etc.), which inevitably raises data privacy concerns. To bridge such a research gap, we propose TimeGlu -- an end-to-end pipeline for short-term glucose prediction solely based on CGM time series data. We implement four baseline methods to conduct a comprehensive comparative analysis of the model's performance. Through extensive experiments on two contrasting datasets (CGM Glucose and Colas dataset), TimeGlu achieves state-of-the-art performance without the need for additional personal data from patients, providing effective guidance for real-world diabetic glucose management.
Abstract:The increasing number of diabetic patients is a serious issue in society today, which has significant negative impacts on people's health and the country's financial expenditures. Because diabetes may develop into potential serious complications, early glucose prediction for diabetic patients is necessary for timely medical treatment. Existing glucose prediction methods typically utilize patients' private data (e.g. age, gender, ethnicity) and physiological parameters (e.g. blood pressure, heart rate) as reference features for glucose prediction, which inevitably leads to privacy protection concerns. Moreover, these models generally focus on either long-term (monthly-based) or short-term (minute-based) predictions. Long-term prediction methods are generally inaccurate because of the external uncertainties that can greatly affect the glucose values, while short-term ones fail to provide timely medical guidance. Based on the above issues, we propose CrossGP, a novel machine-learning framework for cross-day glucose prediction solely based on the patient's external activities without involving any physiological parameters. Meanwhile, we implement three baseline models for comparison. Extensive experiments on Anderson's dataset strongly demonstrate the superior performance of CrossGP and prove its potential for future real-life applications.