Abstract:Video streaming is a fundamental Internet service, while the quality still cannot be guaranteed especially in poor network conditions such as bandwidth-constrained and remote areas. Existing works mainly work towards two directions: traditional pixel-codec streaming nearly approaches its limit and is hard to step further in compression; the emerging neural-enhanced or generative streaming usually fall short in latency and visual fidelity, hindering their practical deployment. Inspired by the recent success of vision foundation model (VFM), we strive to harness the powerful video understanding and processing capacities of VFM to achieve generalization, high fidelity and loss resilience for real-time video streaming with even higher compression rate. We present the first revolutionized paradigm that enables VFM-based end-to-end generative video streaming towards this goal. Specifically, Morphe employs joint training of visual tokenizers and variable-resolution spatiotemporal optimization under simulated network constraints. Additionally, a robust streaming system is constructed that leverages intelligent packet dropping to resist real-world network perturbations. Extensive evaluation demonstrates that Morphe achieves comparable visual quality while saving 62.5\% bandwidth compared to H.265, and accomplishes real-time, loss-resilient video delivery in challenging network environments, representing a milestone in VFM-enabled multimedia streaming solutions.
Abstract:While the OneRec series has successfully unified the fragmented recommendation pipeline into an end-to-end generative framework, a significant gap remains between recommendation systems and general intelligence. Constrained by isolated data, they operate as domain specialists-proficient in pattern matching but lacking world knowledge, reasoning capabilities, and instruction following. This limitation is further compounded by the lack of a holistic benchmark to evaluate such integrated capabilities. To address this, our contributions are: 1) RecIF Bench & Open Data: We propose RecIF-Bench, a holistic benchmark covering 8 diverse tasks that thoroughly evaluate capabilities from fundamental prediction to complex reasoning. Concurrently, we release a massive training dataset comprising 96 million interactions from 160,000 users to facilitate reproducible research. 2) Framework & Scaling: To ensure full reproducibility, we open-source our comprehensive training pipeline, encompassing data processing, co-pretraining, and post-training. Leveraging this framework, we demonstrate that recommendation capabilities can scale predictably while mitigating catastrophic forgetting of general knowledge. 3) OneRec-Foundation: We release OneRec Foundation (1.7B and 8B), a family of models establishing new state-of-the-art (SOTA) results across all tasks in RecIF-Bench. Furthermore, when transferred to the Amazon benchmark, our models surpass the strongest baselines with an average 26.8% improvement in Recall@10 across 10 diverse datasets (Figure 1). This work marks a step towards building truly intelligent recommender systems. Nonetheless, realizing this vision presents significant technical and theoretical challenges, highlighting the need for broader research engagement in this promising direction.
Abstract:Speech-driven 3D talking head generation aims to produce lifelike facial animations precisely synchronized with speech. While considerable progress has been made in achieving high lip-synchronization accuracy, existing methods largely overlook the intricate nuances of individual speaking styles, which limits personalization and realism. In this work, we present a novel framework for personalized 3D talking head animation, namely "PTalker". This framework preserves speaking style through style disentanglement from audio and facial motion sequences and enhances lip-synchronization accuracy through a three-level alignment mechanism between audio and mesh modalities. Specifically, to effectively disentangle style and content, we design disentanglement constraints that encode driven audio and motion sequences into distinct style and content spaces to enhance speaking style representation. To improve lip-synchronization accuracy, we adopt a modality alignment mechanism incorporating three aspects: spatial alignment using Graph Attention Networks to capture vertex connectivity in the 3D mesh structure, temporal alignment using cross-attention to capture and synchronize temporal dependencies, and feature alignment by top-k bidirectional contrastive losses and KL divergence constraints to ensure consistency between speech and mesh modalities. Extensive qualitative and quantitative experiments on public datasets demonstrate that PTalker effectively generates realistic, stylized 3D talking heads that accurately match identity-specific speaking styles, outperforming state-of-the-art methods. The source code and supplementary videos are available at: PTalker.
Abstract:Deep learning has shown great promise in physiological signal analysis, yet its progress is hindered by heterogeneous data formats, inconsistent preprocessing strategies, fragmented model pipelines, and non-reproducible experimental setups. To address these limitations, we present Tyee, a unified, modular, and fully-integrated configurable toolkit designed for intelligent physiological healthcare. Tyee introduces three key innovations: (1) a unified data interface and configurable preprocessing pipeline for 12 kinds of signal modalities; (2) a modular and extensible architecture enabling flexible integration and rapid prototyping across tasks; and (3) end-to-end workflow configuration, promoting reproducible and scalable experimentation. Tyee demonstrates consistent practical effectiveness and generalizability, outperforming or matching baselines across all evaluated tasks (with state-of-the-art results on 12 of 13 datasets). The Tyee toolkit is released at https://github.com/SmileHnu/Tyee and actively maintained.
Abstract:Understanding sentiment in multimodal conversations is a complex yet crucial challenge toward building emotionally intelligent AI systems. The Multimodal Conversational Aspect-based Sentiment Analysis (MCABSA) Challenge invited participants to tackle two demanding subtasks: (1) extracting a comprehensive sentiment sextuple, including holder, target, aspect, opinion, sentiment, and rationale from multi-speaker dialogues, and (2) detecting sentiment flipping, which detects dynamic sentiment shifts and their underlying triggers. For Subtask-I, in the present paper, we designed a structured prompting pipeline that guided large language models (LLMs) to sequentially extract sentiment components with refined contextual understanding. For Subtask-II, we further leveraged the complementary strengths of three LLMs through ensembling to robustly identify sentiment transitions and their triggers. Our system achieved a 47.38% average score on Subtask-I and a 74.12% exact match F1 on Subtask-II, showing the effectiveness of step-wise refinement and ensemble strategies in rich, multimodal sentiment analysis tasks.
Abstract:Neuropsychiatric disorders, such as Alzheimer's disease (AD), depression, and autism spectrum disorder (ASD), are characterized by linguistic and acoustic abnormalities, offering potential biomarkers for early detection. Despite the promise of multi-modal approaches, challenges like multi-lingual generalization and the absence of a unified evaluation framework persist. To address these gaps, we propose FEND (Foundation model-based Evaluation of Neuropsychiatric Disorders), a comprehensive multi-modal framework integrating speech and text modalities for detecting AD, depression, and ASD across the lifespan. Leveraging 13 multi-lingual datasets spanning English, Chinese, Greek, French, and Dutch, we systematically evaluate multi-modal fusion performance. Our results show that multi-modal fusion excels in AD and depression detection but underperforms in ASD due to dataset heterogeneity. We also identify modality imbalance as a prevalent issue, where multi-modal fusion fails to surpass the best mono-modal models. Cross-corpus experiments reveal robust performance in task- and language-consistent scenarios but noticeable degradation in multi-lingual and task-heterogeneous settings. By providing extensive benchmarks and a detailed analysis of performance-influencing factors, FEND advances the field of automated, lifespan-inclusive, and multi-lingual neuropsychiatric disorder assessment. We encourage researchers to adopt the FEND framework for fair comparisons and reproducible research.




Abstract:Recent breakthroughs in generative AI have transformed recommender systems through end-to-end generation. OneRec reformulates recommendation as an autoregressive generation task, achieving high Model FLOPs Utilization. While OneRec-V1 has shown significant empirical success in real-world deployment, two critical challenges hinder its scalability and performance: (1) inefficient computational allocation where 97.66% of resources are consumed by sequence encoding rather than generation, and (2) limitations in reinforcement learning relying solely on reward models. To address these challenges, we propose OneRec-V2, featuring: (1) Lazy Decoder-Only Architecture: Eliminates encoder bottlenecks, reducing total computation by 94% and training resources by 90%, enabling successful scaling to 8B parameters. (2) Preference Alignment with Real-World User Interactions: Incorporates Duration-Aware Reward Shaping and Adaptive Ratio Clipping to better align with user preferences using real-world feedback. Extensive A/B tests on Kuaishou demonstrate OneRec-V2's effectiveness, improving App Stay Time by 0.467%/0.741% while balancing multi-objective recommendations. This work advances generative recommendation scalability and alignment with real-world feedback, representing a step forward in the development of end-to-end recommender systems.
Abstract:While Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities on static images, they often fall short in comprehending dynamic, information-dense short-form videos, a dominant medium in today's digital landscape. To bridge this gap, we introduce \textbf{Kwai Keye-VL}, an 8-billion-parameter multimodal foundation model engineered for leading-edge performance in short-video understanding while maintaining robust general-purpose vision-language abilities. The development of Keye-VL rests on two core pillars: a massive, high-quality dataset exceeding 600 billion tokens with a strong emphasis on video, and an innovative training recipe. This recipe features a four-stage pre-training process for solid vision-language alignment, followed by a meticulous two-phase post-training process. The first post-training stage enhances foundational capabilities like instruction following, while the second phase focuses on stimulating advanced reasoning. In this second phase, a key innovation is our five-mode ``cold-start'' data mixture, which includes ``thinking'', ``non-thinking'', ``auto-think'', ``think with image'', and high-quality video data. This mixture teaches the model to decide when and how to reason. Subsequent reinforcement learning (RL) and alignment steps further enhance these reasoning capabilities and correct abnormal model behaviors, such as repetitive outputs. To validate our approach, we conduct extensive evaluations, showing that Keye-VL achieves state-of-the-art results on public video benchmarks and remains highly competitive on general image-based tasks (Figure 1). Furthermore, we develop and release the \textbf{KC-MMBench}, a new benchmark tailored for real-world short-video scenarios, where Keye-VL shows a significant advantage.




Abstract:Recommender systems have been widely used in various large-scale user-oriented platforms for many years. However, compared to the rapid developments in the AI community, recommendation systems have not achieved a breakthrough in recent years. For instance, they still rely on a multi-stage cascaded architecture rather than an end-to-end approach, leading to computational fragmentation and optimization inconsistencies, and hindering the effective application of key breakthrough technologies from the AI community in recommendation scenarios. To address these issues, we propose OneRec, which reshapes the recommendation system through an end-to-end generative approach and achieves promising results. Firstly, we have enhanced the computational FLOPs of the current recommendation model by 10 $\times$ and have identified the scaling laws for recommendations within certain boundaries. Secondly, reinforcement learning techniques, previously difficult to apply for optimizing recommendations, show significant potential in this framework. Lastly, through infrastructure optimizations, we have achieved 23.7% and 28.8% Model FLOPs Utilization (MFU) on flagship GPUs during training and inference, respectively, aligning closely with the LLM community. This architecture significantly reduces communication and storage overhead, resulting in operating expense that is only 10.6% of traditional recommendation pipelines. Deployed in Kuaishou/Kuaishou Lite APP, it handles 25% of total queries per second, enhancing overall App Stay Time by 0.54% and 1.24%, respectively. Additionally, we have observed significant increases in metrics such as 7-day Lifetime, which is a crucial indicator of recommendation experience. We also provide practical lessons and insights derived from developing, optimizing, and maintaining a production-scale recommendation system with significant real-world impact.
Abstract:Despite extensive research on textual and visual disambiguation, disambiguation through speech (DTS) remains underexplored. This is largely due to the lack of high-quality datasets that pair spoken sentences with richly ambiguous text. To address this gap, we present DEBATE, a unique public Chinese speech-text dataset designed to study how speech cues and patterns-pronunciation, pause, stress and intonation-can help resolve textual ambiguity and reveal a speaker's true intent. DEBATE contains 1,001 carefully selected ambiguous utterances, each recorded by 10 native speakers, capturing diverse linguistic ambiguities and their disambiguation through speech. We detail the data collection pipeline and provide rigorous quality analysis. Additionally, we benchmark three state-of-the-art large speech and audio-language models, illustrating clear and huge performance gaps between machine and human understanding of spoken intent. DEBATE represents the first effort of its kind and offers a foundation for building similar DTS datasets across languages and cultures. The dataset and associated code are available at: https://github.com/SmileHnu/DEBATE.