Abstract:Computer-aided design (CAD) is crucial in prototyping 3D objects through geometric instructions (i.e., CAD programs). In practical design workflows, designers often engage in time-consuming reviews and refinements of these prototypes by comparing them with reference images. To bridge this gap, we introduce the CAD review task to automatically detect and correct potential errors, ensuring consistency between the constructed 3D objects and reference images. However, recent advanced multimodal large language models (MLLMs) struggle to recognize multiple geometric components and perform spatial geometric operations within the CAD program, leading to inaccurate reviews. In this paper, we propose the CAD program repairer (ReCAD) framework to effectively detect program errors and provide helpful feedback on error correction. Additionally, we create a dataset, CADReview, consisting of over 20K program-image pairs, with diverse errors for the CAD review task. Extensive experiments demonstrate that our ReCAD significantly outperforms existing MLLMs, which shows great potential in design applications.
Abstract:Covert communications provide a stronger privacy protection than cryptography and physical-layer security (PLS). However, previous works on covert communications have implicitly assumed the validity of channel reciprocity, i.e., wireless channels remain constant or approximately constant during their coherence time. In this work, we investigate covert communications in the presence of a disco RIS (DRIS) deployed by the warden Willie, where the DRIS with random and time-varying reflective coefficients acts as a "disco ball", introducing timevarying fully-passive jamming (FPJ). Consequently, the channel reciprocity assumption no longer holds. The DRIS not only jams the covert transmissions between Alice and Bob, but also decreases the error probabilities of Willie's detections, without either Bob's channel knowledge or additional jamming power. To quantify the impact of the DRIS on covert communications, we first design a detection rule for the warden Willie in the presence of time-varying FPJ introduced by the DRIS. Then, we define the detection error probabilities, i.e., the false alarm rate (FAR) and the missed detection rate (MDR), as the monitoring performance metrics for Willie's detections, and the signal-to-jamming-plusnoise ratio (SJNR) as a communication performance metric for the covert transmissions between Alice and Bob. Based on the detection rule, we derive the detection threshold for the warden Willie to detect whether communications between Alice and Bob is ongoing, considering the time-varying DRIS-based FPJ. Moreover, we conduct theoretical analyses of the FAR and the MDR at the warden Willie, as well as SJNR at Bob, and then present unique properties of the DRIS-based FPJ in covert communications. We present numerical results to validate the derived theoretical analyses and evaluate the impact of DRIS on covert communications.
Abstract:Traditional scene graphs primarily focus on spatial relationships, limiting vision-language models' (VLMs) ability to reason about complex interactions in visual scenes. This paper addresses two key challenges: (1) conventional detection-to-construction methods produce unfocused, contextually irrelevant relationship sets, and (2) existing approaches fail to form persistent memories for generalizing interaction reasoning to new scenes. We propose Interaction-augmented Scene Graph Reasoning (ISGR), a framework that enhances VLMs' interactional reasoning through three complementary components. First, our dual-stream graph constructor combines SAM-powered spatial relation extraction with interaction-aware captioning to generate functionally salient scene graphs with spatial grounding. Second, we employ targeted interaction queries to activate VLMs' latent knowledge of object functionalities, converting passive recognition into active reasoning about how objects work together. Finally, we introduce a lone-term memory reinforcement learning strategy with a specialized interaction-focused reward function that transforms transient patterns into long-term reasoning heuristics. Extensive experiments demonstrate that our approach significantly outperforms baseline methods on interaction-heavy reasoning benchmarks, with particularly strong improvements on complex scene understanding tasks. The source code can be accessed at https://github.com/open_upon_acceptance.
Abstract:The tragedy of the commons, where individual self-interest leads to collectively disastrous outcomes, is a pervasive challenge in human society. Recent studies have demonstrated that similar phenomena can arise in generative multi-agent systems (MASs). To address this challenge, this paper explores the use of reputation systems as a remedy. We propose RepuNet, a dynamic, dual-level reputation framework that models both agent-level reputation dynamics and system-level network evolution. Specifically, driven by direct interactions and indirect gossip, agents form reputations for both themselves and their peers, and decide whether to connect or disconnect other agents for future interactions. Through two distinct scenarios, we show that RepuNet effectively mitigates the 'tragedy of the commons', promoting and sustaining cooperation in generative MASs. Moreover, we find that reputation systems can give rise to rich emergent behaviors in generative MASs, such as the formation of cooperative clusters, the social isolation of exploitative agents, and the preference for sharing positive gossip rather than negative ones.
Abstract:Multimodal Information Extraction (MIE) has gained attention for extracting structured information from multimedia sources. Traditional methods tackle MIE tasks separately, missing opportunities to share knowledge across tasks. Recent approaches unify these tasks into a generation problem using instruction-based T5 models with visual adaptors, optimized through full-parameter fine-tuning. However, this method is computationally intensive, and multi-task fine-tuning often faces gradient conflicts, limiting performance. To address these challenges, we propose collaborative multi-LoRA experts with achievement-based multi-task loss (C-LoRAE) for MIE tasks. C-LoRAE extends the low-rank adaptation (LoRA) method by incorporating a universal expert to learn shared multimodal knowledge from cross-MIE tasks and task-specific experts to learn specialized instructional task features. This configuration enhances the model's generalization ability across multiple tasks while maintaining the independence of various instruction tasks and mitigating gradient conflicts. Additionally, we propose an achievement-based multi-task loss to balance training progress across tasks, addressing the imbalance caused by varying numbers of training samples in MIE tasks. Experimental results on seven benchmark datasets across three key MIE tasks demonstrate that C-LoRAE achieves superior overall performance compared to traditional fine-tuning methods and LoRA methods while utilizing a comparable number of training parameters to LoRA.
Abstract:Style transfer involves transferring the style from a reference image to the content of a target image. Recent advancements in LoRA-based (Low-Rank Adaptation) methods have shown promise in effectively capturing the style of a single image. However, these approaches still face significant challenges such as content inconsistency, style misalignment, and content leakage. In this paper, we comprehensively analyze the limitations of the standard diffusion parameterization, which learns to predict noise, in the context of style transfer. To address these issues, we introduce ConsisLoRA, a LoRA-based method that enhances both content and style consistency by optimizing the LoRA weights to predict the original image rather than noise. We also propose a two-step training strategy that decouples the learning of content and style from the reference image. To effectively capture both the global structure and local details of the content image, we introduce a stepwise loss transition strategy. Additionally, we present an inference guidance method that enables continuous control over content and style strengths during inference. Through both qualitative and quantitative evaluations, our method demonstrates significant improvements in content and style consistency while effectively reducing content leakage.
Abstract:The six-degree-of-freedom (6-DOF) robotic arm has gained widespread application in human-coexisting environments. While previous research has predominantly focused on functional motion generation, the critical aspect of expressive motion in human-robot interaction remains largely unexplored. This paper presents a novel real-time motion generation planner that enhances interactivity by creating expressive robotic motions between arbitrary start and end states within predefined time constraints. Our approach involves three key contributions: first, we develop a mapping algorithm to construct an expressive motion dataset derived from human dance movements; second, we train motion generation models in both Cartesian and joint spaces using this dataset; third, we introduce an optimization algorithm that guarantees smooth, collision-free motion while maintaining the intended expressive style. Experimental results demonstrate the effectiveness of our method, which can generate expressive and generalized motions in under 0.5 seconds while satisfying all specified constraints.
Abstract:Chinese literary classics hold significant cultural and educational value, offering deep insights into morality, history, and human nature. These works often include classical Chinese and complex narratives, making them difficult for children to read. To bridge this gap, we introduce a child-friendly literary adaptation (CLA) task to adapt the Chinese literary classic into engaging and accessible text for children. However, recent large language models (LLMs) overlook children's reading preferences (\ie, vivid character portrayals, concise narrative structures, and appropriate readability), which poses challenges in CLA. In this paper, we propose a method called InstructChild, which augments the LLM with these preferences for adaptation. Specifically, we first obtain the characters' personalities and narrative structure as additional information for fine-grained instruction tuning. Then, we devise a readability metric as the reward to align the LLM with the children's reading level. Finally, a lookahead decoding strategy is applied to improve the readability of the generated text during inference. To support the evaluation of CLA task, we construct the Classic4Children dataset, which comprises both the original and child-friendly versions of the Four Great Classical Novels of Chinese literature. Experimental results show that our InstructChild significantly improves automatic and human evaluation performance.
Abstract:Large multimodal models (LMMs) have shown remarkable performance in the visual commonsense reasoning (VCR) task, which aims to answer a multiple-choice question based on visual commonsense within an image. However, the ability of LMMs to correct potential visual commonsense errors in the distractor upon their occurrence is yet under-explored. Drawing inspiration from how a human teacher crafts challenging distractors to test students' comprehension of the concepts or skills and assists them in identifying and correcting errors toward the answer, we are the pioneering research for LMMs to simulate this error correction process. To this end, we employ GPT-4 as a ``teacher'' to collect the explainable feedback dataset VCR-DF for error correction, which serves as a benchmark to evaluate the ability of LMMs to identify misconceptions and clarify reasons behind the error in VCR distractors toward final answers. In addition, we propose an LMM-based Pedagogical Expert Instructed Feedback Generation (PEIFG) model to incorporate the learnable expert prompts and multimodal instruction as guidance for feedback generation. Experimental results show that our PEIFG significantly outperforms existing LMMs. We believe that our benchmark provides a new direction for evaluating the capabilities of LMMs.
Abstract:Recent literature highlights the critical role of neighborhood construction in deriving model-agnostic explanations, with a growing trend toward deploying generative models to improve synthetic instance quality, especially for explaining text classifiers. These approaches overcome the challenges in neighborhood construction posed by the unstructured nature of texts, thereby improving the quality of explanations. However, the deployed generators are usually implemented via neural networks and lack inherent explainability, sparking arguments over the transparency of the explanation process itself. To address this limitation while preserving neighborhood quality, this paper introduces a probability-based editing method as an alternative to black-box text generators. This approach generates neighboring texts by implementing manipulations based on in-text contexts. Substituting the generator-based construction process with recursive probability-based editing, the resultant explanation method, XPROB (explainer with probability-based editing), exhibits competitive performance according to the evaluation conducted on two real-world datasets. Additionally, XPROB's fully transparent and more controllable construction process leads to superior stability compared to the generator-based explainers.