Abstract:This work studies near-field secure communications through transmit beamfocusing. We examine the benefit of having a protected eavesdropper-free zone around the legitimate receiver, and we determine the worst-case secrecy performance against a potential eavesdropper located anywhere outside the protected zone. A max-min optimization problem is formulated for the beamfocusing design with and without artificial noise transmission. Despite the NP-hardness of the problem, we develop a synchronous gradient descent-ascent framework that approximates the global maximin solution. A low-complexity solution is also derived that delivers excellent performance over a wide range of operating conditions. We further extend this study to a scenario where it is not possible to physically enforce a protected zone. To this end, we consider secure communications through the creation of a virtual protected zone using a full-duplex legitimate receiver. Numerical results demonstrate that exploiting either the physical or virtual receiver-centered protected zone with appropriately designed beamfocusing is an effective strategy for achieving secure near-field communications.
Abstract:Covert communications provide a stronger privacy protection than cryptography and physical-layer security (PLS). However, previous works on covert communications have implicitly assumed the validity of channel reciprocity, i.e., wireless channels remain constant or approximately constant during their coherence time. In this work, we investigate covert communications in the presence of a disco RIS (DRIS) deployed by the warden Willie, where the DRIS with random and time-varying reflective coefficients acts as a "disco ball", introducing timevarying fully-passive jamming (FPJ). Consequently, the channel reciprocity assumption no longer holds. The DRIS not only jams the covert transmissions between Alice and Bob, but also decreases the error probabilities of Willie's detections, without either Bob's channel knowledge or additional jamming power. To quantify the impact of the DRIS on covert communications, we first design a detection rule for the warden Willie in the presence of time-varying FPJ introduced by the DRIS. Then, we define the detection error probabilities, i.e., the false alarm rate (FAR) and the missed detection rate (MDR), as the monitoring performance metrics for Willie's detections, and the signal-to-jamming-plusnoise ratio (SJNR) as a communication performance metric for the covert transmissions between Alice and Bob. Based on the detection rule, we derive the detection threshold for the warden Willie to detect whether communications between Alice and Bob is ongoing, considering the time-varying DRIS-based FPJ. Moreover, we conduct theoretical analyses of the FAR and the MDR at the warden Willie, as well as SJNR at Bob, and then present unique properties of the DRIS-based FPJ in covert communications. We present numerical results to validate the derived theoretical analyses and evaluate the impact of DRIS on covert communications.
Abstract:A promising type of Reconfigurable Intelligent Surface (RIS) employs tunable control of its varactors using biasing transmission lines below the RIS reflecting elements. Biasing standing waves (BSWs) are excited by a time-periodic signal and sampled at each RIS element to create a desired biasing voltage and control the reflection coefficients of the elements. A simple rectifier can be used to sample the voltages and capture the peaks of the BSWs over time. Like other types of RIS, attempting to model and accurately configure a wave-controlled RIS is extremely challenging due to factors such as device non-linearities, frequency dependence, element coupling, etc., and thus significant differences will arise between the actual and assumed performance. An alternative approach to solving this problem is data-driven: Using training data obtained by sampling the reflected radiation pattern of the RIS for a set of BSWs, a neural network (NN) is designed to create an input-output map between the BSW amplitudes and the resulting sampled radiation pattern. This is the approach discussed in this paper. In the proposed approach, the NN is optimized using a genetic algorithm (GA) to minimize the error between the predicted and measured radiation patterns. The BSW amplitudes are then designed via Simulated Annealing (SA) to optimize a signal-to-leakage-plus-noise ratio measure by iteratively forward-propagating the BSW amplitudes through the NN and using its output as feedback to determine convergence. The resulting optimal solutions are stored in a lookup table to be used both as settings to instantly configure the RIS and as a basis for determining more complex radiation patterns.
Abstract:Integrated sensing and communication (ISAC) is one of the key usage scenarios for future sixth-generation (6G) mobile communication networks, where communication and sensing (C&S) services are simultaneously provided through shared wireless spectrum, signal processing modules, hardware, and network infrastructure. Such an integration is strengthened by the technology trends in 6G, such as denser network nodes, larger antenna arrays, wider bandwidths, higher frequency bands, and more efficient utilization of spectrum and hardware resources, which incentivize and empower enhanced sensing capabilities. As the dominant waveform used in contemporary communication systems, orthogonal frequency division multiplexing (OFDM) is still expected to be a very competitive technology for 6G, rendering it necessary to thoroughly investigate the potential and challenges of OFDM ISAC. Thus, this paper aims to provide a comprehensive tutorial overview of ISAC systems enabled by large-scale multi-input multi-output (MIMO) and OFDM technologies and to discuss their fundamental principles, advantages, and enabling signal processing methods. To this end, a unified MIMO-OFDM ISAC system model is first introduced, followed by four frameworks for estimating parameters across the spatial, delay, and Doppler domains, including parallel one-domain, sequential one-domain, joint two-domain, and joint three-domain parameter estimation. Next, sensing algorithms and performance analyses are presented in detail for far-field scenarios where uniform plane wave (UPW) propagation is valid, followed by their extensions to near-field scenarios where uniform spherical wave (USW) characteristics need to be considered. Finally, this paper points out open challenges and outlines promising avenues for future research on MIMO-OFDM ISAC.
Abstract:Symbol-level precoding (SLP) is a promising solution for addressing the inherent interference problem in dual-functional radar-communication (DFRC) signal designs. This paper considers an SLP-DFRC signal design problem which optimizes the radar performance under communication performance constraints. We show that a common phase modulation applied to the transmit signals from an antenna array does not affect the performance of different radar sensing metrics, including beampattern similarity, signal-to-interference-plus-noise ratio (SINR), and Cram\'er-Rao lower bound (CRLB). We refer to this as symmetric-rotation invariance, upon which we develop low-complexity yet efficient DFRC signal design algorithms. More specifically, we propose a symmetric non-convexity (SNC)-based DFRC algorithm that relies on the non-convexity of the radar sensing metrics to identify a set of radar-only solutions. Based on these solutions, we further exploit the symmetry property of the radar sensing metrics to efficiently design the DFRC signal. We show that the proposed SNC-based algorithm is versatile in the sense that it can be applied to the DFRC signal optimization of all three sensing metrics mentioned above (beampattern, SINR, and CRLB). In addition, since the radar sensing metrics are independent of the communication channel and data symbols, the set of radar-only solutions can be constructed offline, thereby reducing the computational complexity. We also develop an accelerated SNC-based algorithm that further reduces the complexity. Finally, we numerically demonstrate the superiority of the proposed algorithms compared to existing methods in terms of sensing and communication performance as well as computational requirements.
Abstract:Orthogonal frequency division multiplexing - integrated sensing and communication (OFDM-ISAC) has emerged as a key enabler for future wireless networks, leveraging the widely adopted OFDM waveform to seamlessly integrate wireless communication and radar sensing within a unified framework. In this paper, we propose adaptive resource allocation strategies for OFDM-ISAC systems to achieve optimal trade-offs between diverse sensing requirements and communication quality-of-service (QoS). We first develop a comprehensive resource allocation framework for OFDM-ISAC systems, deriving closed-form expressions for key sensing performance metrics, including delay resolution, Doppler resolution, delay-Doppler peak sidelobe level (PSL), and received signal-to-noise ratio (SNR). Building on this theoretical foundation, we introduce two novel resource allocation algorithms tailored to distinct sensing objectives. The resolution-oriented algorithm aims to maximize the weighted delay-Doppler resolution while satisfying constraints on PSL, sensing SNR, communication sum-rate, and transmit power. The sidelobe-oriented algorithm focuses on minimizing delay-Doppler PSL while satisfying resolution, SNR, and communication constraints. To efficiently solve the resulting non-convex optimization problems, we develop two adaptive resource allocation algorithms based on Dinkelbach's transform and majorization-minimization (MM). Extensive simulations validate the effectiveness of the proposed sensing-oriented adaptive resource allocation strategies in enhancing resolution and sidelobe suppression. Remarkably, these strategies achieve sensing performance nearly identical to that of a radar-only scheme, which dedicates all resources to sensing. These results highlight the superior performance of the proposed methods in optimizing the trade-off between sensing and communication objectives within OFDM-ISAC systems.
Abstract:Integrated sensing and communication (ISAC) has emerged as a promising paradigm for next-generation (6G) wireless networks, unifying radar sensing and communication on a shared hardware platform. This paper proposes a dynamic array partitioning framework for monostatic ISAC systems to fully exploit available spatial degrees of freedom (DoFs) and reconfigurable antenna topologies, enhancing sensing performance in complex scenarios. We first establish a theoretical foundation for our work by deriving Bayesian Cram\'{e}r-Rao bounds (BCRBs) under prior distribution constraints for heterogeneous target models, encompassing both point-like and extended targets. Building on this, we formulate a joint optimization framework for transmit beamforming and dynamic array partitioning to minimize the derived BCRBs for direction-of-arrival (DOA) estimation. The optimization problem incorporates practical constraints, including multi-user communication signal-to-interference-plus-noise ratio (SINR) requirements, transmit power budgets, and array partitioning feasibility conditions. To address the non-convexity of the problem, we develop an efficient alternating optimization algorithm combining the alternating direction method of multipliers (ADMM) with semi-definite relaxation (SDR). We also design novel maximum a posteriori (MAP) DOA estimation algorithms specifically adapted to the statistical characteristics of each target model. Extensive simulations illustrate the superiority of the proposed dynamic partitioning strategy over conventional fixed-array architectures across diverse system configurations.
Abstract:Integrated sensing and communication (ISAC) is a pivotal enabler for next-generation wireless networks. A key challenge in ISAC systems lies in designing dual-functional waveforms that can achieve satisfactory radar sensing accuracy by effectively suppressing range-Doppler sidelobes. However, existing solutions are often computationally intensive, limiting their practicality in multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) ISAC deployments. This paper presents a novel low-complexity algorithm leveraging the augmented Lagrangian method (ALM) and Riemannian conjugate gradient (RCG) optimization techniques to address these challenges. The proposed algorithm achieves superior sidelobe suppression compared to state-of-the-art methods while dramatically reducing computational complexity, making it highly suitable for real-world MIMO-OFDM ISAC systems. Simulation results demonstrate that the proposed approach not only outperforms existing benchmarks in sidelobe reduction but also accelerates convergence, ensuring efficient performance across communication and sensing tasks.
Abstract:Integrated sensing and communications (ISAC) has emerged as a promising paradigm to unify wireless communications and radar sensing, enabling efficient spectrum and hardware utilization. A core challenge with realizing the gains of ISAC stems from the unique challenges of dual purpose beamforming design due to the highly non-convex nature of key performance metrics such as sum rate for communications and the Cramer-Rao lower bound (CRLB) for sensing. In this paper, we propose a low-complexity structured approach to ISAC beamforming optimization to simultaneously enhance spectral efficiency and estimation accuracy. Specifically, we develop a successive convex approximation (SCA) based algorithm which transforms the original non-convex problem into a sequence of convex subproblems ensuring convergence to a locally optimal solution. Furthermore, leveraging the proposed SCA framework and the Lagrange duality, we derive the optimal beamforming structure for CRLB optimization in ISAC systems. Our findings characterize the reduction in radar streams one can employ without affecting performance. This enables a dimensionality reduction that enhances computational efficiency. Numerical simulations validate that our approach achieves comparable or superior performance to the considered benchmarks while requiring much lower computational costs.
Abstract:This paper proposes a correlation-based three-stage channel estimation strategy with low pilot overhead for reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) multi-user (MU) MIMO systems, in which both users and base station (BS) are equipped with a hybrid RF architecture. In Stage I, all users jointly transmit pilots and recover the uncompressed received signals to estimate the angle of arrival (AoA) at the BS using the discrete Fourier transform (DFT). Based on the observation that the overall cascaded MIMO channel can be decomposed into multiple sub-channels, the cascaded channel for a typical user is estimated in Stage II. Specifically, using the invariance of angles and the linear correlation of gains related to different cascaded subchannels, we use compressive sensing (CS), least squares (LS), and a one-dimensional search to estimate the Angles of Departure (AoDs), based on which the overall cascaded channel is obtained. In Stage III, the remaining users independently transmit pilots to estimate their individual cascaded channel with the same approach as in Stage II, which exploits the equivalent common RIS-BS channel obtained in Stage II to reduce the pilot overhead. In addition, the hybrid combining matrix and the RIS phase shift matrix are designed to reduce the noise power, thereby further improving the estimation performance. Simulation results demonstrate that the proposed algorithm can achieve high estimation accuracy especially when the number of antennas at the users is small, and reduce pilot overhead by more than five times compared with the existing benchmark approach.