Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:We study the task of agnostic tomography: given copies of an unknown $n$-qubit state $\rho$ which has fidelity $\tau$ with some state in a given class $C$, find a state which has fidelity $\ge \tau - \epsilon$ with $\rho$. We give a new framework, stabilizer bootstrapping, for designing computationally efficient protocols for this task, and use this to get new agnostic tomography protocols for the following classes: Stabilizer states: We give a protocol that runs in time $\mathrm{poly}(n,1/\epsilon)\cdot (1/\tau)^{O(\log(1/\tau))}$, answering an open question posed by Grewal, Iyer, Kretschmer, Liang [40] and Anshu and Arunachalam [6]. Previous protocols ran in time $\mathrm{exp}(\Theta(n))$ or required $\tau>\cos^2(\pi/8)$. States with stabilizer dimension $n - t$: We give a protocol that runs in time $n^3\cdot(2^t/\tau)^{O(\log(1/\epsilon))}$, extending recent work on learning quantum states prepared by circuits with few non-Clifford gates, which only applied in the realizable setting where $\tau = 1$ [30, 37, 46, 61]. Discrete product states: If $C = K^{\otimes n}$ for some $\mu$-separated discrete set $K$ of single-qubit states, we give a protocol that runs in time $(n/\mu)^{O((1 + \log (1/\tau))/\mu)}/\epsilon^2$. This strictly generalizes a prior guarantee which applied to stabilizer product states [39]. For stabilizer product states, we give a further improved protocol that runs in time $(n^2/\epsilon^2)\cdot (1/\tau)^{O(\log(1/\tau))}$. As a corollary, we give the first protocol for estimating stabilizer fidelity, a standard measure of magic for quantum states, to error $\epsilon$ in $n^3 \mathrm{quasipoly}(1/\epsilon)$ time.

Via

Authors:Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul(+23 more)

Figures and Tables:

Abstract:Automated software engineering has been greatly empowered by the recent advances in Large Language Models (LLMs) for programming. While current benchmarks have shown that LLMs can perform various software engineering tasks like human developers, the majority of their evaluations are limited to short and self-contained algorithmic tasks. Solving challenging and practical programming tasks requires the capability of utilizing diverse function calls as tools to efficiently implement functionalities like data analysis and web development. In addition, using multiple tools to solve a task needs compositional reasoning by accurately understanding complex instructions. Fulfilling both of these characteristics can pose a great challenge for LLMs. To assess how well LLMs can solve challenging and practical programming tasks, we introduce Bench, a benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained programming tasks. To evaluate LLMs rigorously, each programming task encompasses 5.6 test cases with an average branch coverage of 99%. In addition, we propose a natural-language-oriented variant of Bench, Benchi, that automatically transforms the original docstrings into short instructions only with essential information. Our extensive evaluation of 60 LLMs shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%. The results underscore the need for further advancements in this area.

Via

Figures and Tables:

Abstract:Supervised fine-tuning enhances the problem-solving abilities of language models across various mathematical reasoning tasks. To maximize such benefits, existing research focuses on broadening the training set with various data augmentation techniques, which is effective for standard single-round question-answering settings. Our work introduces a novel technique aimed at cultivating a deeper understanding of the training problems at hand, enhancing performance not only in standard settings but also in more complex scenarios that require reflective thinking. Specifically, we propose reflective augmentation, a method that embeds problem reflection into each training instance. It trains the model to consider alternative perspectives and engage with abstractions and analogies, thereby fostering a thorough comprehension through reflective reasoning. Extensive experiments validate the achievement of our aim, underscoring the unique advantages of our method and its complementary nature relative to existing augmentation techniques.

Via

Figures and Tables:

Abstract:Recently, multimodal large language models have made significant advancements in video understanding tasks. However, their ability to understand unprocessed long videos is very limited, primarily due to the difficulty in supporting the enormous memory overhead. Although existing methods achieve a balance between memory and information by aggregating frames, they inevitably introduce the severe hallucination issue. To address this issue, this paper constructs a comprehensive hallucination mitigation pipeline based on existing MLLMs. Specifically, we use the CLIP Score to guide the frame sampling process with questions, selecting key frames relevant to the question. Then, We inject question information into the queries of the image Q-former to obtain more important visual features. Finally, during the answer generation stage, we utilize chain-of-thought and in-context learning techniques to explicitly control the generation of answers. It is worth mentioning that for the breakpoint mode, we found that image understanding models achieved better results than video understanding models. Therefore, we aggregated the answers from both types of models using a comparison mechanism. Ultimately, We achieved 84.2\% and 62.9\% for the global and breakpoint modes respectively on the MovieChat dataset, surpassing the official baseline model by 29.1\% and 24.1\%. Moreover the proposed method won the third place in the CVPR LOVEU 2024 Long-Term Video Question Answering Challenge. The code is avaiable at https://github.com/lntzm/CVPR24Track-LongVideo

Via

Abstract:The digital landscape is rapidly evolving with an ever-increasing volume of online news, emphasizing the need for swift and precise analysis of complex events. We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE). This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE, characterized by their key points and timestamps. We establish a benchmark, named TCELongBench, to evaluate the proficiency of LLMs in handling temporal dynamics and understanding extensive text. This benchmark encompasses three distinct tasks - reading comprehension, temporal sequencing, and future event forecasting. In the experiment, we leverage retrieval-augmented generation (RAG) method and LLMs with long context window to deal with lengthy news articles of TCE. Our findings indicate that models with suitable retrievers exhibit comparable performance with those utilizing long context window.

Via

Figures and Tables:

Abstract:Large language models (LLMs) have demonstrated impressive capabilities in mathematical problem solving, particularly in single turn question answering formats. However, real world scenarios often involve mathematical question answering that requires multi turn or interactive information exchanges, and the performance of LLMs on these tasks is still underexplored. This paper introduces MathChat, a comprehensive benchmark specifically designed to evaluate LLMs across a broader spectrum of mathematical tasks. These tasks are structured to assess the models' abilities in multiturn interactions and open ended generation. We evaluate the performance of various SOTA LLMs on the MathChat benchmark, and we observe that while these models excel in single turn question answering, they significantly underperform in more complex scenarios that require sustained reasoning and dialogue understanding. To address the above limitations of existing LLMs when faced with multiturn and open ended tasks, we develop MathChat sync, a synthetic dialogue based math dataset for LLM finetuning, focusing on improving models' interaction and instruction following capabilities in conversations. Experimental results emphasize the need for training LLMs with diverse, conversational instruction tuning datasets like MathChatsync. We believe this work outlines one promising direction for improving the multiturn mathematical reasoning abilities of LLMs, thus pushing forward the development of LLMs that are more adept at interactive mathematical problem solving and real world applications.

Via

Figures and Tables:

Abstract:Intrinsic self-correct was a method that instructed large language models (LLMs) to verify and correct their responses without external feedback. Unfortunately, the study concluded that the LLMs could not self-correct reasoning yet. We find that a simple yet effective verification method can unleash inherent capabilities of the LLMs. That is to mask a key condition in the question, add the current response to construct a verification question, and predict the condition to verify the response. The condition can be an entity in an open-domain question or a numeric value in a math question, which requires minimal effort (via prompting) to identify. We propose an iterative verify-then-correct framework to progressively identify and correct (probably) false responses, named ProCo. We conduct experiments on three reasoning tasks. On average, ProCo, with GPT-3.5-Turbo as the backend LLM, yields $+6.8$ exact match on four open-domain question answering datasets, $+14.1$ accuracy on three arithmetic reasoning datasets, and $+9.6$ accuracy on a commonsense reasoning dataset, compared to Self-Correct.

Via

Figures and Tables:

Abstract:We study quantum-classical separations between classical and quantum supervised learning models based on constant depth (i.e., shallow) circuits, in scenarios with and without noises. We construct a classification problem defined by a noiseless shallow quantum circuit and rigorously prove that any classical neural network with bounded connectivity requires logarithmic depth to output correctly with a larger-than-exponentially-small probability. This unconditional near-optimal quantum-classical separation originates from the quantum nonlocality property that distinguishes quantum circuits from their classical counterparts. We further derive the noise thresholds for demonstrating such a separation on near-term quantum devices under the depolarization noise model. We prove that this separation will persist if the noise strength is upper bounded by an inverse polynomial with respect to the system size, and vanish if the noise strength is greater than an inverse polylogarithmic function. In addition, for quantum devices with constant noise strength, we prove that no super-polynomial classical-quantum separation exists for any classification task defined by shallow Clifford circuits, independent of the structures of the circuits that specify the learning models.

Via

Figures and Tables:

Abstract:Open-source multimodal large language models (MLLMs) excel in various tasks involving textual and visual inputs but still struggle with complex multimodal mathematical reasoning, lagging behind proprietary models like GPT-4V(ision) and Gemini-Pro. Although fine-tuning with intermediate steps (i.e., rationales) elicits some mathematical reasoning skills, the resulting models still fall short in visual comprehension due to inadequate visual-centric supervision, which leads to inaccurate interpretation of math figures. To address this issue, we propose a two-step training pipeline VCAR, which emphasizes the Visual Comprehension training in Addition to mathematical Reasoning learning. It first improves the visual comprehension ability of MLLMs through the visual description generation task, followed by another training step on generating rationales with the assistance of descriptions. Experimental results on two popular benchmarks demonstrate that VCAR substantially outperforms baseline methods solely relying on rationale supervision, especially on problems with high visual demands.

Via

Authors:Chu Li, Zhihan Zhang, Michael Saugstad, Esteban Safranchik, Minchu Kulkarni, Xiaoyu Huang, Shwetak Patel, Vikram Iyer, Tim Althoff, Jon E. Froehlich

Figures and Tables:

Abstract:Crowdsourcing platforms have transformed distributed problem-solving, yet quality control remains a persistent challenge. Traditional quality control measures, such as prescreening workers and refining instructions, often focus solely on optimizing economic output. This paper explores just-in-time AI interventions to enhance both labeling quality and domain-specific knowledge among crowdworkers. We introduce LabelAId, an advanced inference model combining Programmatic Weak Supervision (PWS) with FT-Transformers to infer label correctness based on user behavior and domain knowledge. Our technical evaluation shows that our LabelAId pipeline consistently outperforms state-of-the-art ML baselines, improving mistake inference accuracy by 36.7% with 50 downstream samples. We then implemented LabelAId into Project Sidewalk, an open-source crowdsourcing platform for urban accessibility. A between-subjects study with 34 participants demonstrates that LabelAId significantly enhances label precision without compromising efficiency while also increasing labeler confidence. We discuss LabelAId's success factors, limitations, and its generalizability to other crowdsourced science domains.

Via