Abstract:We present Bishop, the first dedicated hardware accelerator architecture and HW/SW co-design framework for spiking transformers that optimally represents, manages, and processes spike-based workloads while exploring spatiotemporal sparsity and data reuse. Specifically, we introduce the concept of Token-Time Bundle (TTB), a container that bundles spiking data of a set of tokens over multiple time points. Our heterogeneous accelerator architecture Bishop concurrently processes workload packed in TTBs and explores intra- and inter-bundle multiple-bit weight reuse to significantly reduce memory access. Bishop utilizes a stratifier, a dense core array, and a sparse core array to process MLP blocks and projection layers. The stratifier routes high-density spiking activation workload to the dense core and low-density counterpart to the sparse core, ensuring optimized processing tailored to the given spatiotemporal sparsity level. To further reduce data access and computation, we introduce a novel Bundle Sparsity-Aware (BSA) training pipeline that enhances not only the overall but also structured TTB-level firing sparsity. Moreover, the processing efficiency of self-attention layers is boosted by the proposed Error-Constrained TTB Pruning (ECP), which trims activities in spiking queries, keys, and values both before and after the computation of spiking attention maps with a well-defined error bound. Finally, we design a reconfigurable TTB spiking attention core to efficiently compute spiking attention maps by executing highly simplified "AND" and "Accumulate" operations. On average, Bishop achieves a 5.91x speedup and 6.11x improvement in energy efficiency over previous SNN accelerators, while delivering higher accuracy across multiple datasets.
Abstract:We present Phaser, a flexible system that directs narrow-beam laser light to moving robots for concurrent wireless power delivery and communication. We design a semi-automatic calibration procedure to enable fusion of stereo-vision-based 3D robot tracking with high-power beam steering, and a low-power optical communication scheme that reuses the laser light as a data channel. We fabricate a Phaser prototype using off-the-shelf hardware and evaluate its performance with battery-free autonomous robots. Phaser delivers optical power densities of over 110 mW/cm$^2$ and error-free data to mobile robots at multi-meter ranges, with on-board decoding drawing 0.3 mA (97\% less current than Bluetooth Low Energy). We demonstrate Phaser fully powering gram-scale battery-free robots to nearly 2x higher speeds than prior work while simultaneously controlling them to navigate around obstacles and along paths. Code, an open-source design guide, and a demonstration video of Phaser is available at https://mobilex.cs.columbia.edu/phaser.
Abstract:Understanding land use over time is critical to tracking events related to climate change, like deforestation. However, satellite-based remote sensing tools which are used for monitoring struggle to differentiate vegetation types in farms and orchards from forests. We observe that metrics such as the Normalized Difference Vegetation Index (NDVI), based on plant photosynthesis, have unique temporal signatures that reflect agricultural practices and seasonal cycles. We analyze yearly NDVI changes on 20 farms for 10 unique crops. Initial results show that NDVI curves are coherent with agricultural practices, are unique to each crop, consistent globally, and can differentiate farms from forests. We develop a novel longitudinal NDVI dataset for the state of California from 2020-2023 with 500~m resolution and over 70 million points. We use this to develop the TerraTrace platform, an end-to-end analytic tool that classifies land use using NDVI signatures and allows users to query the system through an LLM chatbot and graphical interface.
Abstract:Severe convective weather events, such as hail, tornadoes, and thunderstorms, often occur quickly yet cause significant damage, costing billions of dollars every year. This highlights the importance of forecasting severe weather threats hours in advance to better prepare meteorologists and residents in at-risk areas. Can modern large foundation models perform such forecasting? Existing weather benchmarks typically focus only on predicting time-series changes in certain weather parameters (e.g., temperature, moisture) with text-only features. In this work, we introduce WeatherQA, the first multimodal dataset designed for machines to reason about complex combinations of weather parameters (a.k.a., ingredients) and predict severe weather in real-world scenarios. The dataset includes over 8,000 (multi-images, text) pairs for diverse severe weather events. Each pair contains rich information crucial for forecasting -- the images describe the ingredients capturing environmental instability, surface observations, and radar reflectivity, and the text contains forecast analyses written by human experts. With WeatherQA, we evaluate state-of-the-art vision language models , including GPT4, Claude3, Gemini-1.5, and a fine-tuned Llama3-based VLM, by designing two challenging tasks: (1) multi-choice QA for predicting affected area and (2) classification of the development potential of severe convection. These tasks require deep understanding of domain knowledge (e.g., atmospheric dynamics) and complex reasoning over multimodal data (e.g., interactions between weather parameters). We show a substantial gap between the strongest VLM, GPT4o, and human reasoning. Our comprehensive case study with meteorologists further reveals the weaknesses of the models, suggesting that better training and data integration are necessary to bridge this gap. WeatherQA link: https://github.com/chengqianma/WeatherQA.
Abstract:Crowdsourcing platforms have transformed distributed problem-solving, yet quality control remains a persistent challenge. Traditional quality control measures, such as prescreening workers and refining instructions, often focus solely on optimizing economic output. This paper explores just-in-time AI interventions to enhance both labeling quality and domain-specific knowledge among crowdworkers. We introduce LabelAId, an advanced inference model combining Programmatic Weak Supervision (PWS) with FT-Transformers to infer label correctness based on user behavior and domain knowledge. Our technical evaluation shows that our LabelAId pipeline consistently outperforms state-of-the-art ML baselines, improving mistake inference accuracy by 36.7% with 50 downstream samples. We then implemented LabelAId into Project Sidewalk, an open-source crowdsourcing platform for urban accessibility. A between-subjects study with 34 participants demonstrates that LabelAId significantly enhances label precision without compromising efficiency while also increasing labeler confidence. We discuss LabelAId's success factors, limitations, and its generalizability to other crowdsourced science domains.
Abstract:Passively collected behavioral health data from ubiquitous sensors holds significant promise to provide mental health professionals insights from patient's daily lives; however, developing analysis tools to use this data in clinical practice requires addressing challenges of generalization across devices and weak or ambiguous correlations between the measured signals and an individual's mental health. To address these challenges, we take a novel approach that leverages large language models (LLMs) to synthesize clinically useful insights from multi-sensor data. We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data such as step count and sleep relate to conditions like depression and anxiety. We first demonstrate binary depression classification with LLMs achieving accuracies of 61.1% which exceed the state of the art. While it is not robust for clinical use, this leads us to our key finding: even more impactful and valued than classification is a new human-AI collaboration approach in which clinician experts interactively query these tools and combine their domain expertise and context about the patient with AI generated reasoning to support clinical decision-making. We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
Abstract:Using wind to disperse microfliers that fall like seeds and leaves can help automate large-scale sensor deployments. Here, we present battery-free microfliers that can change shape in mid-air to vary their dispersal distance. We design origami microfliers using bi-stable leaf-out structures and uncover an important property: a simple change in the shape of these origami structures causes two dramatically different falling behaviors. When unfolded and flat, the microfliers exhibit a tumbling behavior that increases lateral displacement in the wind. When folded inward, their orientation is stabilized, resulting in a downward descent that is less influenced by wind. To electronically transition between these two shapes, we designed a low-power electromagnetic actuator that produces peak forces of up to 200 millinewtons within 25 milliseconds while powered by solar cells. We fabricated a circuit directly on the folded origami structure that includes a programmable microcontroller, Bluetooth radio, solar power harvesting circuit, a pressure sensor to estimate altitude and a temperature sensor. Outdoor evaluations show that our 414 milligram origami microfliers are able to electronically change their shape mid-air, travel up to 98 meters in a light breeze, and wirelessly transmit data via Bluetooth up to 60 meters away, using only power collected from the sun.
Abstract:Large language models (LLMs) have shown remarkable abilities to generate code, however their ability to develop software for embedded systems, which requires cross-domain knowledge of hardware and software has not been studied. In this paper we systematically evaluate leading LLMs (GPT-3.5, GPT-4, PaLM 2) to assess their performance for embedded system development, study how human programmers interact with these tools, and develop an AI-based software engineering workflow for building embedded systems. We develop an an end-to-end hardware-in-the-loop evaluation platform for verifying LLM generated programs using sensor actuator pairs. We compare all three models with N=450 experiments and find surprisingly that GPT-4 especially shows an exceptional level of cross-domain understanding and reasoning, in some cases generating fully correct programs from a single prompt. In N=50 trials, GPT-4 produces functional I2C interfaces 66% of the time. GPT-4 also produces register-level drivers, code for LoRa communication, and context-specific power optimizations for an nRF52 program resulting in over 740x current reduction to 12.2 uA. We also characterize the models' limitations to develop a generalizable workflow for using LLMs in embedded system development. We evaluate the workflow with 15 users including novice and expert programmers. We find that our workflow improves productivity for all users and increases the success rate for building a LoRa environmental sensor from 25% to 100%, including for users with zero hardware or C/C++ experience.