EJ
Abstract:To improve the reliability and interpretability of industrial process monitoring, this article proposes a Causal Graph Spatial-Temporal Autoencoder (CGSTAE). The network architecture of CGSTAE combines two components: a correlation graph structure learning module based on spatial self-attention mechanism (SSAM) and a spatial-temporal encoder-decoder module utilizing graph convolutional long-short term memory (GCLSTM). The SSAM learns correlation graphs by capturing dynamic relationships between variables, while a novel three-step causal graph structure learning algorithm is introduced to derive a causal graph from these correlation graphs. The algorithm leverages a reverse perspective of causal invariance principle to uncover the invariant causal graph from varying correlations. The spatial-temporal encoder-decoder, built with GCLSTM units, reconstructs time-series process data within a sequence-to-sequence framework. The proposed CGSTAE enables effective process monitoring and fault detection through two statistics in the feature space and residual space. Finally, we validate the effectiveness of CGSTAE in process monitoring through the Tennessee Eastman process and a real-world air separation process.
Abstract:Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) has catalyzed significant breakthroughs in complex LLM reasoning within verifiable domains, such as mathematics and programming. Recent efforts have sought to extend this paradigm to open-ended tasks by employing LLMs-as-a-Judge to provide sequence-level rewards for policy optimization. However, these rewards are inherently sparse, failing to provide the fine-grained supervision necessary for generating complex, long-form trajectories. Furthermore, current work treats the Judge as a black-box oracle, discarding the rich intermediate feedback signals encoded in it. To address these limitations, we introduce Grad2Reward, a novel framework that extracts dense process rewards directly from the Judge's model inference process via a single backward pass. By leveraging gradient-based attribution, Grad2Reward enables precise token-level credit assignment, substantially enhancing training efficiency and reasoning quality. Additionally, Grad2Reward introduces a self-judging mechanism, allowing the policy to improve through its own evaluative signals without training specialized reward models or reliance on superior external Judges. The experiments demonstrate that policies optimized with Grad2Reward achieve outstanding performance across diverse open-ended tasks, affirming its effectiveness and broad generalizability.
Abstract:Advertising image generation has increasingly focused on online metrics like Click-Through Rate (CTR), yet existing approaches adopt a ``one-size-fits-all" strategy that optimizes for overall CTR while neglecting preference diversity among user groups. This leads to suboptimal performance for specific groups, limiting targeted marketing effectiveness. To bridge this gap, we present \textit{One Size, Many Fits} (OSMF), a unified framework that aligns diverse group-wise click preferences in large-scale advertising image generation. OSMF begins with product-aware adaptive grouping, which dynamically organizes users based on their attributes and product characteristics, representing each group with rich collective preference features. Building on these groups, preference-conditioned image generation employs a Group-aware Multimodal Large Language Model (G-MLLM) to generate tailored images for each group. The G-MLLM is pre-trained to simultaneously comprehend group features and generate advertising images. Subsequently, we fine-tune the G-MLLM using our proposed Group-DPO for group-wise preference alignment, which effectively enhances each group's CTR on the generated images. To further advance this field, we introduce the Grouped Advertising Image Preference Dataset (GAIP), the first large-scale public dataset of group-wise image preferences, including around 600K groups built from 40M users. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance in both offline and online settings. Our code and datasets will be released at https://github.com/JD-GenX/OSMF.
Abstract:Linearizing pretrained large language models (LLMs) primarily relies on intra-layer hybrid attention mechanisms to alleviate the quadratic complexity of standard softmax attention. Existing methods perform token routing based on sliding-window partitions, resulting in position-based selection and fails to capture token-specific global importance. Meanwhile, linear attention further suffers from distribution shift caused by learnable feature maps that distort pretrained feature magnitudes. Motivated by these limitations, we propose STILL, an intra-layer hybrid linearization framework for efficiently linearizing LLMs. STILL introduces a Self-Saliency Score with strong local-global consistency, enabling accurate token selection using sliding-window computation, and retains salient tokens for sparse softmax attention while summarizing the remaining context via linear attention. To preserve pretrained representations, we design a Norm-Preserved Feature Map (NP-Map) that decouples feature direction from magnitude and reinjects pretrained norms. We further adopt a unified training-inference architecture with chunk-wise parallelization and delayed selection to improve hardware efficiency. Experiments show that STILL matches or surpasses the original pretrained model on commonsense and general reasoning tasks, and achieves up to a 86.2% relative improvement over prior linearized attention methods on long-context benchmarks.
Abstract:We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
Abstract:Class-Incremental Learning (CIL) aims to sequentially learn new classes while mitigating catastrophic forgetting of previously learned knowledge. Conventional CIL approaches implicitly assume that classes are morphologically static, focusing primarily on preserving previously learned representations as new classes are introduced. However, this assumption neglects intra-class evolution: a phenomenon wherein instances of the same semantic class undergo significant morphological transformations, such as a larva turning into a butterfly. Consequently, a model must both discriminate between classes and adapt to evolving appearances within a single class. To systematically address this challenge, we formalize Stage-Aware CIL (Stage-CIL), a paradigm in which each class is learned progressively through distinct morphological stages. To facilitate rigorous evaluation within this paradigm, we introduce the Stage-Bench, a 10-domain, 2-stages dataset and protocol that jointly measure inter- and intra-class forgetting. We further propose STAGE, a novel method that explicitly learns abstract and transferable evolution patterns within a fixed-size memory pool. By decoupling semantic identity from transformation dynamics, STAGE enables accurate prediction of future morphologies based on earlier representations. Extensive empirical evaluation demonstrates that STAGE consistently and substantially outperforms existing state-of-the-art approaches, highlighting its effectiveness in simultaneously addressing inter-class discrimination and intra-class morphological adaptation.
Abstract:The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
Abstract:Generative models for financial time series often create data that look realistic and even reproduce stylized facts such as fat tails or volatility clustering. However, these apparent successes break down under trading backtests: models like GANs or WGAN-GP frequently collapse, yielding extreme and unrealistic results that make the synthetic data unusable in practice. We identify the root cause in the neglect of financial asymmetry and rare tail events, which strongly affect market risk but are often overlooked by objectives focusing on distribution matching. To address this, we introduce the Stylized Facts Alignment GAN (SFAG), which converts key stylized facts into differentiable structural constraints and jointly optimizes them with adversarial loss. This multi-constraint design ensures that generated series remain aligned with market dynamics not only in plots but also in backtesting. Experiments on the Shanghai Composite Index (2004--2024) show that while baseline GANs produce unstable and implausible trading outcomes, SFAG generates synthetic data that preserve stylized facts and support robust momentum strategy performance. Our results highlight that structure-preserving objectives are essential to bridge the gap between superficial realism and practical usability in financial generative modeling.
Abstract:Low-count positron emission tomography (PET) reconstruction is a challenging inverse problem due to severe degradations arising from Poisson noise, photon scarcity, and attenuation correction errors. Existing deep learning methods typically address these in the spatial domain with an undifferentiated optimization objective, making it difficult to disentangle overlapping artifacts and limiting correction effectiveness. In this work, we perform a Fourier-domain analysis and reveal that these degradations are spectrally separable: Poisson noise and photon scarcity cause high-frequency phase perturbations, while attenuation errors suppress low-frequency amplitude components. Leveraging this insight, we propose FourierPET, a Fourier-based unrolled reconstruction framework grounded in the Alternating Direction Method of Multipliers. It consists of three tailored modules: a spectral consistency module that enforces global frequency alignment to maintain data fidelity, an amplitude-phase correction module that decouples and compensates for high-frequency phase distortions and low-frequency amplitude suppression, and a dual adjustment module that accelerates convergence during iterative reconstruction. Extensive experiments demonstrate that FourierPET achieves state-of-the-art performance with significantly fewer parameters, while offering enhanced interpretability through frequency-aware correction.