Abstract:Recent advances in vision-language models (VLMs) reasoning have been largely attributed to the rise of reinforcement Learning (RL), which has shifted the community's focus away from the supervised fine-tuning (SFT) paradigm. Many studies suggest that introducing the SFT stage not only fails to improve reasoning ability but may also negatively impact model training. In this study, we revisit this RL-centric belief through a systematic and controlled comparison of SFT and RL on VLM Reasoning. Using identical data sources, we find that the relative effectiveness of SFT and RL is conditional and strongly influenced by model capacity, data scale, and data distribution. Contrary to common assumptions, our findings show that SFT plays a crucial role across several scenarios: (1) Effectiveness for weaker models. SFT more reliably elicits reasoning capabilities in smaller or weaker VLMs. (2) Data efficiency. SFT with only 2K achieves comparable or better reasoning performance to RL with 20K. (3) Cross-modal transferability. SFT demonstrates stronger generalization across modalities. Moreover, we identify a pervasive issue of deceptive rewards, where higher rewards fail to correlate with better reasoning accuracy in RL. These results challenge the prevailing "RL over SFT" narrative. They highlight that the role of SFT may have been underestimated and support a more balanced post-training pipeline in which SFT and RL function as complementary components.
Abstract:Source-Free Object Detection (SFOD) aims to adapt a source-pretrained object detector to a target domain without access to source data. However, existing SFOD methods predominantly rely on internal knowledge from the source model, which limits their capacity to generalize across domains and often results in biased pseudo-labels, thereby hindering both transferability and discriminability. In contrast, Vision Foundation Models (VFMs), pretrained on massive and diverse data, exhibit strong perception capabilities and broad generalization, yet their potential remains largely untapped in the SFOD setting. In this paper, we propose a novel SFOD framework that leverages VFMs as external knowledge sources to jointly enhance feature alignment and label quality. Specifically, we design three VFM-based modules: (1) Patch-weighted Global Feature Alignment (PGFA) distills global features from VFMs using patch-similarity-based weighting to enhance global feature transferability; (2) Prototype-based Instance Feature Alignment (PIFA) performs instance-level contrastive learning guided by momentum-updated VFM prototypes; and (3) Dual-source Enhanced Pseudo-label Fusion (DEPF) fuses predictions from detection VFMs and teacher models via an entropy-aware strategy to yield more reliable supervision. Extensive experiments on six benchmarks demonstrate that our method achieves state-of-the-art SFOD performance, validating the effectiveness of integrating VFMs to simultaneously improve transferability and discriminability.




Abstract:Imitation learning based policies perform well in robotic manipulation, but they often degrade under *egocentric viewpoint shifts* when trained from a single egocentric viewpoint. To address this issue, we present **EgoDemoGen**, a framework that generates *paired* novel egocentric demonstrations by retargeting actions in the novel egocentric frame and synthesizing the corresponding egocentric observation videos with proposed generative video repair model **EgoViewTransfer**, which is conditioned by a novel-viewpoint reprojected scene video and a robot-only video rendered from the retargeted joint actions. EgoViewTransfer is finetuned from a pretrained video generation model using self-supervised double reprojection strategy. We evaluate EgoDemoGen on both simulation (RoboTwin2.0) and real-world robot. After training with a mixture of EgoDemoGen-generated novel egocentric demonstrations and original standard egocentric demonstrations, policy success rate improves **absolutely** by **+17.0%** for standard egocentric viewpoint and by **+17.7%** for novel egocentric viewpoints in simulation. On real-world robot, the **absolute** improvements are **+18.3%** and **+25.8%**. Moreover, performance continues to improve as the proportion of EgoDemoGen-generated demonstrations increases, with diminishing returns. These results demonstrate that EgoDemoGen provides a practical route to egocentric viewpoint-robust robotic manipulation.




Abstract:Beyond scratch coding, exploiting large-scale code repositories (e.g., GitHub) for practical tasks is vital in real-world software development, yet current benchmarks rarely evaluate code agents in such authentic, workflow-driven scenarios. To bridge this gap, we introduce GitTaskBench, a benchmark designed to systematically assess this capability via 54 realistic tasks across 7 modalities and 7 domains. Each task pairs a relevant repository with an automated, human-curated evaluation harness specifying practical success criteria. Beyond measuring execution and task success, we also propose the alpha-value metric to quantify the economic benefit of agent performance, which integrates task success rates, token cost, and average developer salaries. Experiments across three state-of-the-art agent frameworks with multiple advanced LLMs show that leveraging code repositories for complex task solving remains challenging: even the best-performing system, OpenHands+Claude 3.7, solves only 48.15% of tasks. Error analysis attributes over half of failures to seemingly mundane yet critical steps like environment setup and dependency resolution, highlighting the need for more robust workflow management and increased timeout preparedness. By releasing GitTaskBench, we aim to drive progress and attention toward repository-aware code reasoning, execution, and deployment -- moving agents closer to solving complex, end-to-end real-world tasks. The benchmark and code are open-sourced at https://github.com/QuantaAlpha/GitTaskBench.




Abstract:The ultimate goal of code agents is to solve complex tasks autonomously. Although large language models (LLMs) have made substantial progress in code generation, real-world tasks typically demand full-fledged code repositories rather than simple scripts. Building such repositories from scratch remains a major challenge. Fortunately, GitHub hosts a vast, evolving collection of open-source repositories, which developers frequently reuse as modular components for complex tasks. Yet, existing frameworks like OpenHands and SWE-Agent still struggle to effectively leverage these valuable resources. Relying solely on README files provides insufficient guidance, and deeper exploration reveals two core obstacles: overwhelming information and tangled dependencies of repositories, both constrained by the limited context windows of current LLMs. To tackle these issues, we propose RepoMaster, an autonomous agent framework designed to explore and reuse GitHub repositories for solving complex tasks. For efficient understanding, RepoMaster constructs function-call graphs, module-dependency graphs, and hierarchical code trees to identify essential components, providing only identified core elements to the LLMs rather than the entire repository. During autonomous execution, it progressively explores related components using our exploration tools and prunes information to optimize context usage. Evaluated on the adjusted MLE-bench, RepoMaster achieves a 110% relative boost in valid submissions over the strongest baseline OpenHands. On our newly released GitTaskBench, RepoMaster lifts the task-pass rate from 24.1% to 62.9% while reducing token usage by 95%. Our code and demonstration materials are publicly available at https://github.com/wanghuacan/RepoMaster.




Abstract:Out-of-distribution (OOD) detection aims to detect test samples outside the training category space, which is an essential component in building reliable machine learning systems. Existing reviews on OOD detection primarily focus on method taxonomy, surveying the field by categorizing various approaches. However, many recent works concentrate on non-traditional OOD detection scenarios, such as test-time adaptation, multi-modal data sources and other novel contexts. In this survey, we uniquely review recent advances in OOD detection from the problem scenario perspective for the first time. According to whether the training process is completely controlled, we divide OOD detection methods into training-driven and training-agnostic. Besides, considering the rapid development of pre-trained models, large pre-trained model-based OOD detection is also regarded as an important category and discussed separately. Furthermore, we provide a discussion of the evaluation scenarios, a variety of applications, and several future research directions. We believe this survey with new taxonomy will benefit the proposal of new methods and the expansion of more practical scenarios. A curated list of related papers is provided in the Github repository: \url{https://github.com/shuolucs/Awesome-Out-Of-Distribution-Detection}