Abstract:Large-scale video generative models can synthesize diverse and realistic visual content for dynamic world creation, but they often lack element-wise controllability, hindering their use in editing scenes and training embodied AI agents. We propose Dreamland, a hybrid world generation framework combining the granular control of a physics-based simulator and the photorealistic content output of large-scale pretrained generative models. In particular, we design a layered world abstraction that encodes both pixel-level and object-level semantics and geometry as an intermediate representation to bridge the simulator and the generative model. This approach enhances controllability, minimizes adaptation cost through early alignment with real-world distributions, and supports off-the-shelf use of existing and future pretrained generative models. We further construct a D3Sim dataset to facilitate the training and evaluation of hybrid generation pipelines. Experiments demonstrate that Dreamland outperforms existing baselines with 50.8% improved image quality, 17.9% stronger controllability, and has great potential to enhance embodied agent training. Code and data will be made available.
Abstract:Diffusion models (DMs) have demonstrated remarkable performance in high-fidelity image and video generation. Because high-quality generations with DMs typically require a large number of function evaluations (NFEs), resulting in slow sampling, there has been extensive research successfully reducing the NFE to a small range (<10) while maintaining acceptable image quality. However, many practical applications, such as those involving Stable Diffusion 3.5, FLUX, and SANA, commonly operate in the mid-NFE regime (20-50 NFE) to achieve superior results, and, despite the practical relevance, research on the effective sampling within this mid-NFE regime remains underexplored. In this work, we propose a novel, training-free, and structure-independent DM ODE solver called the Stabilized Taylor Orthogonal Runge--Kutta (STORK) method, based on a class of stiff ODE solvers with a Taylor expansion adaptation. Unlike prior work such as DPM-Solver, which is dependent on the semi-linear structure of the DM ODE, STORK is applicable to any DM sampling, including noise-based and flow matching-based models. Within the 20-50 NFE range, STORK achieves improved generation quality, as measured by FID scores, across unconditional pixel-level generation and conditional latent-space generation tasks using models like Stable Diffusion 3.5 and SANA. Code is available at https://github.com/ZT220501/STORK.
Abstract:Policy gradient methods are one of the most successful methods for solving challenging reinforcement learning problems. However, despite their empirical successes, many SOTA policy gradient algorithms for discounted problems deviate from the theoretical policy gradient theorem due to the existence of a distribution mismatch. In this work, we analyze the impact of this mismatch on the policy gradient methods. Specifically, we first show that in the case of tabular parameterizations, the methods under the mismatch remain globally optimal. Then, we extend this analysis to more general parameterizations by leveraging the theory of biased stochastic gradient descent. Our findings offer new insights into the robustness of policy gradient methods as well as the gap between theoretical foundations and practical implementations.
Abstract:Vision Language Models (VLMs) demonstrate significant potential as embodied AI agents for various mobility applications. However, a standardized, closed-loop benchmark for evaluating their spatial reasoning and sequential decision-making capabilities is lacking. To address this, we present MetaVQA: a comprehensive benchmark designed to assess and enhance VLMs' understanding of spatial relationships and scene dynamics through Visual Question Answering (VQA) and closed-loop simulations. MetaVQA leverages Set-of-Mark prompting and top-down view ground-truth annotations from nuScenes and Waymo datasets to automatically generate extensive question-answer pairs based on diverse real-world traffic scenarios, ensuring object-centric and context-rich instructions. Our experiments show that fine-tuning VLMs with the MetaVQA dataset significantly improves their spatial reasoning and embodied scene comprehension in safety-critical simulations, evident not only in improved VQA accuracies but also in emerging safety-aware driving maneuvers. In addition, the learning demonstrates strong transferability from simulation to real-world observation. Code and data will be publicly available at https://metadriverse.github.io/metavqa .