Abstract:Target search and tracking (SAT) is a fundamental problem for various robotic applications such as search and rescue and environmental exploration. This paper proposes an informative trajectory planning approach, namely ReSPIRe, for SAT in unknown cluttered environments under considerably inaccurate prior target information and limited sensing field of view. We first develop a novel sigma point-based approximation approach to fast and accurately estimate mutual information reward under non-Gaussian belief distributions, utilizing informative sampling in state and observation spaces to mitigate the computational intractability of integral calculation. To tackle significant uncertainty associated with inadequate prior target information, we propose the hierarchical particle structure in ReSPIRe, which not only extracts critical particles for global route guidance, but also adjusts the particle number adaptively for planning efficiency. Building upon the hierarchical structure, we develop the reusable belief tree search approach to build a policy tree for online trajectory planning under uncertainty, which reuses rollout evaluation to improve planning efficiency. Extensive simulations and real-world experiments demonstrate that ReSPIRe outperforms representative benchmark methods with smaller MI approximation error, higher search efficiency, and more stable tracking performance, while maintaining outstanding computational efficiency.
Abstract:Existing sparse attention methods primarily target inference-time acceleration by selecting critical tokens under predefined sparsity patterns. However, they often fail to bridge the training-inference gap and lack the capacity for fine-grained token selection across multiple dimensions such as queries, key-values (KV), and heads, leading to suboptimal performance and limited acceleration gains. In this paper, we introduce OmniSparse, a training-aware fine-grained sparse attention framework for long-video MLLMs, which operates in both training and inference with dynamic token budget allocation. Specifically, OmniSparse contains three adaptive and complementary mechanisms: (1) query selection via lazy-active classification, retaining active queries that capture broad semantic similarity while discarding most lazy ones that focus on limited local context and exhibit high functional redundancy; (2) KV selection with head-level dynamic budget allocation, where a shared budget is determined based on the flattest head and applied uniformly across all heads to ensure attention recall; and (3) KV cache slimming to reduce head-level redundancy by selectively fetching visual KV cache according to the head-level decoding query pattern. Experimental results show that OmniSparse matches the performance of full attention while achieving up to 2.7x speedup during prefill and 2.4x memory reduction during decoding.
Abstract:Supervised learning relies on high-quality labeled data, but obtaining such data through human annotation is both expensive and time-consuming. Recent work explores using large language models (LLMs) for annotation, but LLM-generated labels still fall short of human-level quality. To address this problem, we propose the Annotation with Critical Thinking (ACT) data pipeline, where LLMs serve not only as annotators but also as judges to critically identify potential errors. Human effort is then directed towards reviewing only the most "suspicious" cases, significantly improving the human annotation efficiency. Our major contributions are as follows: (1) ACT is applicable to a wide range of domains, including natural language processing (NLP), computer vision (CV), and multimodal understanding, by leveraging multimodal-LLMs (MLLMs). (2) Through empirical studies, we derive 7 insights on how to enhance annotation quality while efficiently reducing the human cost, and then translate these findings into user-friendly guidelines. (3) We theoretically analyze how to modify the loss function so that models trained on ACT data achieve similar performance to those trained on fully human-annotated data. Our experiments show that the performance gap can be reduced to less than 2% on most benchmark datasets while saving up to 90% of human costs.
Abstract:Monocular 3D Visual Grounding (Mono3DVG) is an emerging task that locates 3D objects in RGB images using text descriptions with geometric cues. However, existing methods face two key limitations. Firstly, they often over-rely on high-certainty keywords that explicitly identify the target object while neglecting critical spatial descriptions. Secondly, generalized textual features contain both 2D and 3D descriptive information, thereby capturing an additional dimension of details compared to singular 2D or 3D visual features. This characteristic leads to cross-dimensional interference when refining visual features under text guidance. To overcome these challenges, we propose Mono3DVG-EnSD, a novel framework that integrates two key components: the CLIP-Guided Lexical Certainty Adapter (CLIP-LCA) and the Dimension-Decoupled Module (D2M). The CLIP-LCA dynamically masks high-certainty keywords while retaining low-certainty implicit spatial descriptions, thereby forcing the model to develop a deeper understanding of spatial relationships in captions for object localization. Meanwhile, the D2M decouples dimension-specific (2D/3D) textual features from generalized textual features to guide corresponding visual features at same dimension, which mitigates cross-dimensional interference by ensuring dimensionally-consistent cross-modal interactions. Through comprehensive comparisons and ablation studies on the Mono3DRefer dataset, our method achieves state-of-the-art (SOTA) performance across all metrics. Notably, it improves the challenging Far(Acc@0.5) scenario by a significant +13.54%.
Abstract:With growing concerns over data privacy, researchers have started using virtual data as an alternative to sensitive real-world images for training person re-identification (Re-ID) models. However, existing virtual datasets produced by game engines still face challenges such as complex construction and poor domain generalization, making them difficult to apply in real scenarios. To address these challenges, we propose a Dual-stage Prompt-driven Privacy-preserving Paradigm (DPPP). In the first stage, we generate rich prompts incorporating multi-dimensional attributes such as pedestrian appearance, illumination, and viewpoint that drive the diffusion model to synthesize diverse data end-to-end, building a large-scale virtual dataset named GenePerson with 130,519 images of 6,641 identities. In the second stage, we propose a Prompt-driven Disentanglement Mechanism (PDM) to learn domain-invariant generalization features. With the aid of contrastive learning, we employ two textual inversion networks to map images into pseudo-words representing style and content, respectively, thereby constructing style-disentangled content prompts to guide the model in learning domain-invariant content features at the image level. Experiments demonstrate that models trained on GenePerson with PDM achieve state-of-the-art generalization performance, surpassing those on popular real and virtual Re-ID datasets.
Abstract:Large Vision-Language Models (LVLMs) have made significant strides in image caption, visual question answering, and robotics by integrating visual and textual information. However, they remain prone to errors in incongruous contexts, where objects appear unexpectedly or are absent when contextually expected. This leads to two key recognition failures: object misidentification and hallucination. To systematically examine this issue, we introduce the Object Recognition in Incongruous Context Benchmark (ORIC), a novel benchmark that evaluates LVLMs in scenarios where object-context relationships deviate from expectations. ORIC employs two key strategies: (1) LLM-guided sampling, which identifies objects that are present but contextually incongruous, and (2) CLIP-guided sampling, which detects plausible yet nonexistent objects that are likely to be hallucinated, thereby creating an incongruous context. Evaluating 18 LVLMs and two open-vocabulary detection models, our results reveal significant recognition gaps, underscoring the challenges posed by contextual incongruity. This work provides critical insights into LVLMs' limitations and encourages further research on context-aware object recognition.
Abstract:Pathologists routinely alternate between different magnifications when examining Whole-Slide Images, allowing them to evaluate both broad tissue morphology and intricate cellular details to form comprehensive diagnoses. However, existing deep learning-based cell detection models struggle to replicate these behaviors and learn the interdependent semantics between structures at different magnifications. A key barrier in the field is the lack of datasets with multi-scale overlapping cell and tissue annotations. The OCELOT 2023 challenge was initiated to gather insights from the community to validate the hypothesis that understanding cell and tissue (cell-tissue) interactions is crucial for achieving human-level performance, and to accelerate the research in this field. The challenge dataset includes overlapping cell detection and tissue segmentation annotations from six organs, comprising 673 pairs sourced from 306 The Cancer Genome Atlas (TCGA) Whole-Slide Images with hematoxylin and eosin staining, divided into training, validation, and test subsets. Participants presented models that significantly enhanced the understanding of cell-tissue relationships. Top entries achieved up to a 7.99 increase in F1-score on the test set compared to the baseline cell-only model that did not incorporate cell-tissue relationships. This is a substantial improvement in performance over traditional cell-only detection methods, demonstrating the need for incorporating multi-scale semantics into the models. This paper provides a comparative analysis of the methods used by participants, highlighting innovative strategies implemented in the OCELOT 2023 challenge.
Abstract:Monocular 3D visual grounding is a novel task that aims to locate 3D objects in RGB images using text descriptions with explicit geometry information. Despite the inclusion of geometry details in the text, we observe that the text embeddings are sensitive to the magnitude of numerical values but largely ignore the associated measurement units. For example, simply equidistant mapping the length with unit "meter" to "decimeters" or "centimeters" leads to severe performance degradation, even though the physical length remains equivalent. This observation signifies the weak 3D comprehension of pre-trained language model, which generates misguiding text features to hinder 3D perception. Therefore, we propose to enhance the 3D perception of model on text embeddings and geometry features with two simple and effective methods. Firstly, we introduce a pre-processing method named 3D-text Enhancement (3DTE), which enhances the comprehension of mapping relationships between different units by augmenting the diversity of distance descriptors in text queries. Next, we propose a Text-Guided Geometry Enhancement (TGE) module to further enhance the 3D-text information by projecting the basic text features into geometrically consistent space. These 3D-enhanced text features are then leveraged to precisely guide the attention of geometry features. We evaluate the proposed method through extensive comparisons and ablation studies on the Mono3DRefer dataset. Experimental results demonstrate substantial improvements over previous methods, achieving new state-of-the-art results with a notable accuracy gain of 11.94\% in the "Far" scenario. Our code will be made publicly available.
Abstract:Accurate channel prediction is essential in massive multiple-input multiple-output (m-MIMO) systems to improve precoding effectiveness and reduce the overhead of channel state information (CSI) feedback. However, existing methods often suffer from accumulated prediction errors and poor generalization to dynamic wireless environments. Large language models (LLMs) have demonstrated remarkable modeling and generalization capabilities in tasks such as time series prediction, making them a promising solution. Nevertheless, a significant modality gap exists between the linguistic knowledge embedded in pretrained LLMs and the intrinsic characteristics of CSI, posing substantial challenges for their direct application to channel prediction. Moreover, the large parameter size of LLMs hinders their practical deployment in real-world communication systems with stringent latency constraints. To address these challenges, we propose a novel channel prediction framework based on semantically aligned large models, referred to as CSI-ALM, which bridges the modality gap between natural language and channel information. Specifically, we design a cross-modal fusion module that aligns CSI representations . Additionally, we maximize the cosine similarity between word embeddings and CSI embeddings to construct semantic cues. To reduce complexity and enable practical implementation, we further introduce a lightweight version of the proposed approach, called CSI-ALM-Light. This variant is derived via a knowledge distillation strategy based on attention matrices. Extensive experimental results demonstrate that CSI-ALM achieves a 1 dB gain over state-of-the-art deep learning methods. Moreover, under limited training data conditions, CSI-ALM-Light, with only 0.34M parameters, attains performance comparable to CSI-ALM and significantly outperforms conventional deep learning approaches.




Abstract:Chronic kidney disease (CKD) is a major global health issue, affecting over 10% of the population and causing significant mortality. While kidney biopsy remains the gold standard for CKD diagnosis and treatment, the lack of comprehensive benchmarks for kidney pathology segmentation hinders progress in the field. To address this, we organized the Kidney Pathology Image Segmentation (KPIs) Challenge, introducing a dataset that incorporates preclinical rodent models of CKD with over 10,000 annotated glomeruli from 60+ Periodic Acid Schiff (PAS)-stained whole slide images. The challenge includes two tasks, patch-level segmentation and whole slide image segmentation and detection, evaluated using the Dice Similarity Coefficient (DSC) and F1-score. By encouraging innovative segmentation methods that adapt to diverse CKD models and tissue conditions, the KPIs Challenge aims to advance kidney pathology analysis, establish new benchmarks, and enable precise, large-scale quantification for disease research and diagnosis.