Abstract:In this paper, we introduce a model designed to improve the prediction of image-text alignment, targeting the challenge of compositional understanding in current visual-language models. Our approach focuses on generating high-quality training datasets for the alignment task by producing mixed-type negative captions derived from positive ones. Critically, we address the distribution imbalance between positive and negative captions to ensure that the alignment model does not depend solely on textual information but also considers the associated images for predicting alignment accurately. By creating this enhanced training data, we fine-tune an existing leading visual-language model to boost its capability in understanding alignment. Our model significantly outperforms current top-performing methods across various datasets. We also demonstrate the applicability of our model by ranking the images generated by text-to-image models based on text alignment. Project page: \url{https://yuheng-li.github.io/LLaVA-score/}
Abstract:3D perception in LiDAR point clouds is crucial for a self-driving vehicle to properly act in 3D environment. However, manually labeling point clouds is hard and costly. There has been a growing interest in self-supervised pre-training of 3D perception models. Following the success of contrastive learning in images, current methods mostly conduct contrastive pre-training on point clouds only. Yet an autonomous driving vehicle is typically supplied with multiple sensors including cameras and LiDAR. In this context, we systematically study single modality, cross-modality, and multi-modality for contrastive learning of point clouds, and show that cross-modality wins over other alternatives. In addition, considering the huge difference between the training sources in 2D images and 3D point clouds, it remains unclear how to design more effective contrastive units for LiDAR. We therefore propose the instance-aware and similarity-balanced contrastive units that are tailored for self-driving point clouds. Extensive experiments reveal that our approach achieves remarkable performance gains over various point cloud models across the downstream perception tasks of LiDAR based 3D object detection and 3D semantic segmentation on the four popular benchmarks including Waymo Open Dataset, nuScenes, SemanticKITTI and ONCE.
Abstract:In the realm of vision models, the primary mode of representation is using pixels to rasterize the visual world. Yet this is not always the best or unique way to represent visual content, especially for designers and artists who depict the world using geometry primitives such as polygons. Vector graphics (VG), on the other hand, offer a textual representation of visual content, which can be more concise and powerful for content like cartoons or sketches. Recent studies have shown promising results on processing vector graphics with capable Large Language Models (LLMs). However, such works focus solely on qualitative results, understanding, or a specific type of vector graphics. We propose VGBench, a comprehensive benchmark for LLMs on handling vector graphics through diverse aspects, including (a) both visual understanding and generation, (b) evaluation of various vector graphics formats, (c) diverse question types, (d) wide range of prompting techniques, (e) under multiple LLMs. Evaluating on our collected 4279 understanding and 5845 generation samples, we find that LLMs show strong capability on both aspects while exhibiting less desirable performance on low-level formats (SVG). Both data and evaluation pipeline will be open-sourced at https://vgbench.github.io.
Abstract:Large Language Models (LLMs) equipped with extensive world knowledge and strong reasoning skills can tackle diverse tasks across domains, often by posing them as conversation-style instruction-response pairs. In this paper, we propose LLaRA: Large Language and Robotics Assistant, a framework which formulates robot action policy as conversations, and provides improved responses when trained with auxiliary data that complements policy learning. LLMs with visual inputs, i.e., Vision Language Models (VLMs), have the capacity to process state information as visual-textual prompts and generate optimal policy decisions in text. To train such action policy VLMs, we first introduce an automated pipeline to generate diverse high-quality robotics instruction data from existing behavior cloning data. A VLM finetuned with the resulting collection of datasets based on a conversation-style formulation tailored for robotics tasks, can generate meaningful robot action policy decisions. Our experiments across multiple simulated and real-world environments demonstrate the state-of-the-art performance of the proposed LLaRA framework. The code, datasets, and pretrained models are available at https://github.com/LostXine/LLaRA.
Abstract:Large Multimodal Models (LMMs) have shown remarkable capabilities across a variety of tasks (e.g., image captioning, visual question answering). While broad, their knowledge remains generic (e.g., recognizing a dog), and they are unable to handle personalized subjects (e.g., recognizing a user's pet dog). Human reasoning, in contrast, typically operates within the context of specific subjects in our surroundings. For example, one might ask, "What should I buy for my dog's birthday?"; as opposed to a generic inquiry about "What should I buy for a dog's birthday?". Similarly, when looking at a friend's image, the interest lies in seeing their activities (e.g., "my friend is holding a cat"), rather than merely observing generic human actions (e.g., "a man is holding a cat"). In this paper, we introduce the novel task of personalizing LMMs, so that they can have conversations about a specific subject. We propose Yo'LLaVA, which learns to embed a personalized subject into a set of latent tokens given a handful of example images of the subject. Our qualitative and quantitative analyses reveal that Yo'LLaVA can learn the concept more efficiently using fewer tokens and more effectively encode the visual attributes compared to strong prompting baselines (e.g., LLaVA).
Abstract:Large Multimodal Models (LMMs) such as LLaVA have shown strong performance in visual-linguistic reasoning. These models first embed images into a fixed large number of visual tokens and then feed them into a Large Language Model (LLM). However, this design causes an excessive number of tokens for dense visual scenarios such as high-resolution images and videos, leading to great inefficiency. While token pruning/merging methods do exist, they produce a single length output for each image and do not afford flexibility in trading off information density v.s. efficiency. Inspired by the concept of Matryoshka Dolls, we propose M3: Matryoshka Multimodal Models, which learns to represent visual content as nested sets of visual tokens that capture information across multiple coarse-to-fine granularities. Our approach offers several unique benefits for LMMs: (1) One can explicitly control the visual granularity per test instance during inference, e.g. , adjusting the number of tokens used to represent an image based on the anticipated complexity or simplicity of the content; (2) M3 provides a framework for analyzing the granularity needed for existing datasets, where we find that COCO-style benchmarks only need around ~9 visual tokens to obtain accuracy similar to that of using all 576 tokens; (3) Our approach provides a foundation to explore the best trade-off between performance and visual token length at sample level, where our investigation reveals that a large gap exists between the oracle upper bound and current fixed-scale representations.
Abstract:Large Multimodal Models (LMMs) have shown significant reasoning capabilities by connecting a visual encoder and a large language model. LMMs typically use a fixed amount of visual tokens, such as the penultimate layer features in the CLIP visual encoder, as the prefix content. Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which increase the number of visual tokens significantly. However, due to the design of the Transformer architecture, computational costs associated with these models tend to increase quadratically with the number of input tokens. To tackle this problem, we explore a token reduction mechanism and find, similar to prior work, that many visual tokens are spatially redundant. Based on this, we propose PruMerge, a novel adaptive visual token reduction approach, which largely reduces the number of visual tokens while maintaining comparable model performance. We first select the unpruned visual tokens based on their similarity to class tokens and spatial tokens. We then cluster the pruned tokens based on key similarity and merge the clustered tokens with the unpruned tokens to supplement their information. Empirically, when applied to LLaVA-1.5, our approach can compress the visual tokens by 18 times on average, and achieve comparable performance across diverse visual question-answering and reasoning tasks. Code and checkpoints are at https://llava-prumerge.github.io/.
Abstract:The field of efficient Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges. Although the field has expanded and is vibrant, there hasn't been a concise framework that analyzes the various methods of LLM Inference to provide a clear understanding of this domain. Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model for systematic analysis of LLM inference techniques. This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems, such as why LLMs are memory-bound, how much memory and computation they need, and how to choose the right hardware. We systematically collate the latest advancements in efficient LLM inference, covering crucial areas such as model compression (e.g., Knowledge Distillation and Quantization), algorithm improvements (e.g., Early Exit and Mixture-of-Expert), and both hardware and system-level enhancements. Our survey stands out by analyzing these methods with roofline model, helping us understand their impact on memory access and computation. This distinctive approach not only showcases the current research landscape but also delivers valuable insights for practical implementation, positioning our work as an indispensable resource for researchers new to the field as well as for those seeking to deepen their understanding of efficient LLM deployment. The analyze tool, LLM-Viewer, is open-sourced.
Abstract:Due to the lack of depth cues in images, multi-frame inputs are important for the success of vision-based perception, prediction, and planning in autonomous driving. Observations from different angles enable the recovery of 3D object states from 2D image inputs if we can identify the same instance in different input frames. However, the dynamic nature of autonomous driving scenes leads to significant changes in the appearance and shape of each instance captured by the camera at different time steps. To this end, we propose a novel contrastive learning algorithm, Cohere3D, to learn coherent instance representations in a long-term input sequence robust to the change in distance and perspective. The learned representation aids in instance-level correspondence across multiple input frames in downstream tasks. In the pretraining stage, the raw point clouds from LiDAR sensors are utilized to construct the long-term temporal correspondence for each instance, which serves as guidance for the extraction of instance-level representation from the vision-based bird's eye-view (BEV) feature map. Cohere3D encourages a consistent representation for the same instance at different frames but distinguishes between representations of different instances. We evaluate our algorithm by finetuning the pretrained model on various downstream perception, prediction, and planning tasks. Results show a notable improvement in both data efficiency and task performance.
Abstract:We propose CounterCurate, a framework to comprehensively improve the visio-linguistic compositional reasoning capability for both contrastive and generative multimodal models. In particular, we identify two under-explored critical problems: the neglect of the physically grounded reasoning (counting and position understanding) and the potential of using highly capable text and image generation models for semantic counterfactual fine-tuning. Our work pioneers an approach that addresses these gaps. We first spotlight the near-chance performance of multimodal models like CLIP and LLaVA in physically grounded compositional reasoning. We then apply simple data augmentation using a grounded image generation model, GLIGEN, to generate finetuning data, resulting in significant performance improvements: +33% and +37% for CLIP and LLaVA, respectively, on our newly curated Flickr30k-Positions benchmark. Moreover, we exploit the capabilities of high-performing text generation and image generation models, specifically GPT-4V and DALLE-3, to curate challenging semantic counterfactuals, thereby further enhancing compositional reasoning capabilities on benchmarks such as SugarCrepe, where CounterCurate outperforms GPT-4V.