Abstract:The self-attention mechanism, successfully employed with the transformer structure is shown promise in many computer vision tasks including image recognition, and object detection. Despite the surge, the use of the transformer for the problem of stereo matching remains relatively unexplored. In this paper, we comprehensively investigate the use of the transformer for the problem of stereo matching, especially for laparoscopic videos, and propose a new hybrid deep stereo matching framework (HybridStereoNet) that combines the best of the CNN and the transformer in a unified design. To be specific, we investigate several ways to introduce transformers to volumetric stereo matching pipelines by analyzing the loss landscape of the designs and in-domain/cross-domain accuracy. Our analysis suggests that employing transformers for feature representation learning, while using CNNs for cost aggregation will lead to faster convergence, higher accuracy and better generalization than other options. Our extensive experiments on Sceneflow, SCARED2019 and dVPN datasets demonstrate the superior performance of our HybridStereoNet.
Abstract:We propose to explore a new problem called audio-visual segmentation (AVS), in which the goal is to output a pixel-level map of the object(s) that produce sound at the time of the image frame. To facilitate this research, we construct the first audio-visual segmentation benchmark (AVSBench), providing pixel-wise annotations for the sounding objects in audible videos. Two settings are studied with this benchmark: 1) semi-supervised audio-visual segmentation with a single sound source and 2) fully-supervised audio-visual segmentation with multiple sound sources. To deal with the AVS problem, we propose a novel method that uses a temporal pixel-wise audio-visual interaction module to inject audio semantics as guidance for the visual segmentation process. We also design a regularization loss to encourage the audio-visual mapping during training. Quantitative and qualitative experiments on the AVSBench compare our approach to several existing methods from related tasks, demonstrating that the proposed method is promising for building a bridge between the audio and pixel-wise visual semantics. Code is available at https://github.com/OpenNLPLab/AVSBench.
Abstract:Vision transformers have shown great success on numerous computer vision tasks. However, its central component, softmax attention, prohibits vision transformers from scaling up to high-resolution images, due to both the computational complexity and memory footprint being quadratic. Although linear attention was introduced in natural language processing (NLP) tasks to mitigate a similar issue, directly applying existing linear attention to vision transformers may not lead to satisfactory results. We investigate this problem and find that computer vision tasks focus more on local information compared with NLP tasks. Based on this observation, we present a Vicinity Attention that introduces a locality bias to vision transformers with linear complexity. Specifically, for each image patch, we adjust its attention weight based on its 2D Manhattan distance measured by its neighbouring patches. In this case, the neighbouring patches will receive stronger attention than far-away patches. Moreover, since our Vicinity Attention requires the token length to be much larger than the feature dimension to show its efficiency advantages, we further propose a new Vicinity Vision Transformer (VVT) structure to reduce the feature dimension without degenerating the accuracy. We perform extensive experiments on the CIFAR100, ImageNet1K, and ADE20K datasets to validate the effectiveness of our method. Our method has a slower growth rate of GFlops than previous transformer-based and convolution-based networks when the input resolution increases. In particular, our approach achieves state-of-the-art image classification accuracy with 50% fewer parameters than previous methods.
Abstract:Directly regressing the non-rigid shape and camera pose from the individual 2D frame is ill-suited to the Non-Rigid Structure-from-Motion (NRSfM) problem. This frame-by-frame 3D reconstruction pipeline overlooks the inherent spatial-temporal nature of NRSfM, i.e., reconstructing the whole 3D sequence from the input 2D sequence. In this paper, we propose to model deep NRSfM from a sequence-to-sequence translation perspective, where the input 2D frame sequence is taken as a whole to reconstruct the deforming 3D non-rigid shape sequence. First, we apply a shape-motion predictor to estimate the initial non-rigid shape and camera motion from a single frame. Then we propose a context modeling module to model camera motions and complex non-rigid shapes. To tackle the difficulty in enforcing the global structure constraint within the deep framework, we propose to impose the union-of-subspace structure by replacing the self-expressiveness layer with multi-head attention and delayed regularizers, which enables end-to-end batch-wise training. Experimental results across different datasets such as Human3.6M, CMU Mocap and InterHand prove the superiority of our framework. The code will be made publicly available
Abstract:Conformer has shown a great success in automatic speech recognition (ASR) on many public benchmarks. One of its crucial drawbacks is the quadratic time-space complexity with respect to the input sequence length, which prohibits the model to scale-up as well as process longer input audio sequences. To solve this issue, numerous linear attention methods have been proposed. However, these methods often have limited performance on ASR as they treat tokens equally in modeling, neglecting the fact that the neighbouring tokens are often more connected than the distanced tokens. In this paper, we take this fact into account and propose a new locality-biased linear attention for Conformer. It not only achieves higher accuracy than the vanilla Conformer, but also enjoys linear space-time computational complexity. To be specific, we replace the softmax attention with a locality-biased linear attention (LBLA) mechanism in Conformer blocks. The LBLA contains a kernel function to ensure the linear complexities and a cosine reweighing matrix to impose more weights on neighbouring tokens. Extensive experiments on the LibriSpeech corpus show that by introducing this locality bias to the Conformer, our method achieves a lower word error rate with more than 22% inference speed.
Abstract:We propose a new video camouflaged object detection (VCOD) framework that can exploit both short-term dynamics and long-term temporal consistency to detect camouflaged objects from video frames. An essential property of camouflaged objects is that they usually exhibit patterns similar to the background and thus make them hard to identify from still images. Therefore, effectively handling temporal dynamics in videos becomes the key for the VCOD task as the camouflaged objects will be noticeable when they move. However, current VCOD methods often leverage homography or optical flows to represent motions, where the detection error may accumulate from both the motion estimation error and the segmentation error. On the other hand, our method unifies motion estimation and object segmentation within a single optimization framework. Specifically, we build a dense correlation volume to implicitly capture motions between neighbouring frames and utilize the final segmentation supervision to optimize the implicit motion estimation and segmentation jointly. Furthermore, to enforce temporal consistency within a video sequence, we jointly utilize a spatio-temporal transformer to refine the short-term predictions. Extensive experiments on VCOD benchmarks demonstrate the architectural effectiveness of our approach. We also provide a large-scale VCOD dataset named MoCA-Mask with pixel-level handcrafted ground-truth masks and construct a comprehensive VCOD benchmark with previous methods to facilitate research in this direction. Dataset Link: https://xueliancheng.github.io/SLT-Net-project.
Abstract:Transformer has shown great successes in natural language processing, computer vision, and audio processing. As one of its core components, the softmax attention helps to capture long-range dependencies yet prohibits its scale-up due to the quadratic space and time complexity to the sequence length. Kernel methods are often adopted to reduce the complexity by approximating the softmax operator. Nevertheless, due to the approximation errors, their performances vary in different tasks/corpus and suffer crucial performance drops when compared with the vanilla softmax attention. In this paper, we propose a linear transformer called cosFormer that can achieve comparable or better accuracy to the vanilla transformer in both casual and cross attentions. cosFormer is based on two key properties of softmax attention: i). non-negativeness of the attention matrix; ii). a non-linear re-weighting scheme that can concentrate the distribution of the attention matrix. As its linear substitute, cosFormer fulfills these properties with a linear operator and a cosine-based distance re-weighting mechanism. Extensive experiments on language modeling and text understanding tasks demonstrate the effectiveness of our method. We further examine our method on long sequences and achieve state-of-the-art performance on the Long-Range Arena benchmark. The source code is available at https://github.com/OpenNLPLab/cosFormer.
Abstract:This work studies the task of glossification, of which the aim is to em transcribe natural spoken language sentences for the Deaf (hard-of-hearing) community to ordered sign language glosses. Previous sequence-to-sequence language models trained with paired sentence-gloss data often fail to capture the rich connections between the two distinct languages, leading to unsatisfactory transcriptions. We observe that despite different grammars, glosses effectively simplify sentences for the ease of deaf communication, while sharing a large portion of vocabulary with sentences. This has motivated us to implement glossification by executing a collection of editing actions, e.g. word addition, deletion, and copying, called editing programs, on their natural spoken language counterparts. Specifically, we design a new neural agent that learns to synthesize and execute editing programs, conditioned on sentence contexts and partial editing results. The agent is trained to imitate minimal editing programs, while exploring more widely the program space via policy gradients to optimize sequence-wise transcription quality. Results show that our approach outperforms previous glossification models by a large margin.
Abstract:Weakly Supervised Semantic Segmentation (WSSS) is challenging, particularly when image-level labels are used to supervise pixel level prediction. To bridge their gap, a Class Activation Map (CAM) is usually generated to provide pixel level pseudo labels. CAMs in Convolutional Neural Networks suffer from partial activation ie, only the most discriminative regions are activated. Transformer based methods, on the other hand, are highly effective at exploring global context with long range dependency modeling, potentially alleviating the "partial activation" issue. In this paper, we propose the first transformer based WSSS approach, and introduce the Gradient weighted Element wise Transformer Attention Map (GETAM). GETAM shows fine scale activation for all feature map elements, revealing different parts of the object across transformer layers. Further, we propose an activation aware label completion module to generate high quality pseudo labels. Finally, we incorporate our methods into an end to end framework for WSSS using double backward propagation. Extensive experiments on PASCAL VOC and COCO demonstrate that our results beat the state-of-the-art end-to-end approaches by a significant margin, and outperform most multi-stage methods.m most multi-stage methods.
Abstract:The task of semi-supervised video object segmentation (VOS) has been greatly advanced and state-of-the-art performance has been made by dense matching-based methods. The recent methods leverage space-time memory (STM) networks and learn to retrieve relevant information from all available sources, where the past frames with object masks form an external memory and the current frame as the query is segmented using the mask information in the memory. However, when forming the memory and performing matching, these methods only exploit the appearance information while ignoring the motion information. In this paper, we advocate the return of the \emph{motion information} and propose a motion uncertainty-aware framework (MUNet) for semi-supervised VOS. First, we propose an implicit method to learn the spatial correspondences between neighboring frames, building upon a correlation cost volume. To handle the challenging cases of occlusion and textureless regions during constructing dense correspondences, we incorporate the uncertainty in dense matching and achieve motion uncertainty-aware feature representation. Second, we introduce a motion-aware spatial attention module to effectively fuse the motion feature with the semantic feature. Comprehensive experiments on challenging benchmarks show that \textbf{\textit{using a small amount of data and combining it with powerful motion information can bring a significant performance boost}}. We achieve ${76.5\%}$ $\mathcal{J} \& \mathcal{F}$ only using DAVIS17 for training, which significantly outperforms the \textit{SOTA} methods under the low-data protocol. \textit{The code will be released.}